
Philip A E Pogge Von Strandmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	332
2	Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 2013, 6, 668-672.	12.9	282
3	Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica Et Cosmochimica Acta, 2011, 75, 5247-5268.	3.9	252
4	The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica Et Cosmochimica Acta, 2010, 74, 5259-5279.	3.9	214
5	The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth and Planetary Science Letters, 2008, 276, 187-197.	4.4	209
6	The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochimica Et Cosmochimica Acta, 2017, 207, 102-138.	3.9	195
7	The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 2007, 262, 563-580.	4.4	192
8	Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth and Planetary Science Letters, 2006, 251, 134-147.	4.4	172
9	Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth and Planetary Science Letters, 2012, 339-340, 11-23.	4.4	172
10	Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature, 2017, 549, 511-515.	27.8	129
11	Lithium, magnesium and uranium isotope behaviour in the estuarine environment of basaltic islands. Earth and Planetary Science Letters, 2008, 274, 462-471.	4.4	112
12	Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chemical Geology, 2010, 270, 227-239.	3.3	109
13	Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth and Planetary Science Letters, 2010, 295, 104-114.	4.4	101
14	Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2918-2923.	7.1	100
15	The dissolution of olivine added to soil: Implications for enhanced weathering. Applied Geochemistry, 2015, 61, 109-118.	3.0	99
16	Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 2019, 12, 468-474.	12.9	96
17	Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth and Planetary Science Letters, 2015, 432, 210-222.	4.4	94
18	Precise magnesium isotope measurements in core top planktic and benthic foraminifera. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	92

#	Article	IF	CITATIONS
19	The Li isotope response to mountain uplift. Geology, 2015, 43, 67-70.	4.4	91
20	Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA. Geochimica Et Cosmochimica Acta, 2012, 77, 530-545.	3.9	84
21	Continental weathering following a Cryogenian glaciation: Evidence from calcium and magnesium isotopes. Earth and Planetary Science Letters, 2014, 396, 66-77.	4.4	84
22	Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. Geochimica Et Cosmochimica Acta, 2017, 198, 17-31.	3.9	78
23	The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochimica Et Cosmochimica Acta, 2015, 164, 318-332.	3.9	75
24	Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Nature Communications, 2015, 6, 10157.	12.8	72
25	Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nature Communications, 2019, 10, 1983.	12.8	68
26	Lithium and Lithium Isotopes in Earth's Surface Cycles. Elements, 2020, 16, 253-258.	0.5	67
27	Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes. Earth and Planetary Science Letters, 2014, 406, 24-36.	4.4	66
28	Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes. Biogeosciences, 2014, 11, 5155-5168.	3.3	64
29	Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes. Geochimica Et Cosmochimica Acta, 2019, 245, 154-171.	3.9	64
30	Partial diagenetic overprint of Late Jurassic belemnites from New Zealand: Implications for the preservation potential of Î7Li values in calcite fossils. Geochimica Et Cosmochimica Acta, 2013, 120, 80-96.	3.9	63
31	The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn, Iceland. Chemical Geology, 2016, 445, 4-13.	3.3	62
32	Li isotopes in the middle Yellow River: Seasonal variability, sources and fractionation. Geochimica Et Cosmochimica Acta, 2019, 248, 88-108.	3.9	57
33	A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature, 2021, 595, 394-398.	27.8	56
34	The Li isotope composition of marine biogenic carbonates: Patterns and mechanisms. Geochimica Et Cosmochimica Acta, 2018, 236, 315-335.	3.9	54
35	Extreme Magnesium Isotope Fractionation at Outcrop Scale Records the Mechanism and Rate at which Reaction Fronts Advance. Journal of Petrology, 2015, 56, 33-58.	2.8	53
36	The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered andesitic catchment. Geochimica Et Cosmochimica Acta, 2017, 202, 77-100.	3.9	52

#	Article	IF	CITATIONS
37	Riverine silicon isotope variations in glaciated basaltic terrains: Implications for the Si delivery to the ocean over glacial–interglacial intervals. Earth and Planetary Science Letters, 2013, 369-370, 211-219.	4.4	50
38	Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology, 2019, 517, 34-43.	3.3	50
39	Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry. Earth and Planetary Science Letters, 2014, 395, 91-100.	4.4	45
40	Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar. Geology, 2020, 48, 462-467.	4.4	45
41	Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum. Science Advances, 2021, 7, eabh4224.	10.3	44
42	The stable calcium isotopic composition of rivers draining basaltic catchments in Iceland. Earth and Planetary Science Letters, 2013, 374, 173-184.	4.4	43
43	Measuring the â€~Great Unconformity' on the North China Craton using new detrital zircon age data. Geological Society Special Publication, 2017, 448, 145-159.	1.3	43
44	Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles. Earth and Planetary Science Letters, 2017, 469, 64-74.	4.4	39
45	Assessing bulk carbonates as archives for seawater Li isotope ratios. Chemical Geology, 2019, 530, 119338.	3.3	39
46	Mg Isotope Interlaboratory Comparison of Reference Materials from Earthâ€Surface Lowâ€Temperature Environments. Geostandards and Geoanalytical Research, 2018, 42, 205-221.	3.1	35
47	Interlaboratory comparison of magnesium isotopic compositions of 12 felsic to ultramafic igneous rock standards analyzed by <scp>MC″CPMS</scp> . Geochemistry, Geophysics, Geosystems, 2015, 16, 3197-3209.	2.5	34
48	Was climatic cooling during the earliest Carboniferous driven by expansion of seed plants?. Earth and Planetary Science Letters, 2021, 565, 116953.	4.4	33
49	A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities. Mineralogical Magazine, 2011, 75, 2485-2494.	1.4	30
50	Ca and Mg isotope fractionation during the stoichiometric dissolution of dolomite at temperatures from 51 to 126 ŰC and 5 bars CO2 pressure. Chemical Geology, 2017, 467, 76-88.	3.3	30
51	The rapid resetting of the Ca isotopic signatures of calcite at ambient temperature during its congruent dissolution, precipitation, and at equilibrium. Chemical Geology, 2019, 512, 1-10.	3.3	30
52	Exploring the importance of authigenic clay formation in the global Li cycle. Geochimica Et Cosmochimica Acta, 2020, 289, 47-68.	3.9	29
53	Using stable Mg isotope signatures to assess the fate of magnesium during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. Geochimica Et Cosmochimica Acta, 2019, 245, 542-555.	3.9	27
54	Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chemical Geology, 2017, 475, 105-121.	3.3	26

#	Article	IF	CITATIONS
55	Analysis of mass dependent and mass independent selenium isotope variability in black shales. Journal of Analytical Atomic Spectrometry, 2014, 29, 1648-1659.	3.0	23
56	Ca isotope constraints on chemical weathering processes: Evidence from headwater in the Changjiang River, China. Chemical Geology, 2020, 531, 119341.	3.3	23
57	Transport and exchange of U-series nuclides between suspended material, dissolved load and colloids in rivers draining basaltic terrains. Earth and Planetary Science Letters, 2011, 301, 125-136.	4.4	18
58	The Response of Magnesium, Silicon, and Calcium Isotopes to Rapidly Uplifting and Weathering Terrains: South Island, New Zealand. Frontiers in Earth Science, 2019, 7, .	1.8	17
59	Lithium isotopes and partition coefficients in inorganic carbonates: Proxy calibration for weathering reconstruction. Geochimica Et Cosmochimica Acta, 2021, 305, 243-262.	3.9	17
60	On the use of Li isotopes as a proxy for water–rock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel. Geochimica Et Cosmochimica Acta, 2017, 198, 396-418.	3.9	16
61	Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations. Earth and Planetary Science Letters, 2022, 577, 117260.	4.4	15
62	Using Mg Isotopes to Estimate Natural Calcite Compositions and Precipitation Rates During the 2010 Eyjafjallajökull Eruption. Frontiers in Earth Science, 2019, 7, .	1.8	14
63	Continental weathering and terrestrial (oxyhydr)oxide export: Comparing glacial and non-glacial catchments in Iceland. Chemical Geology, 2017, 462, 55-66.	3.3	13
64	Deep fluid release in warm subduction zones from a breached slab seal. Earth and Planetary Science Letters, 2020, 534, 116046.	4.4	13
65	Ge and Si Isotope Behavior During Intense Tropical Weathering and Ecosystem Cycling. Global Biogeochemical Cycles, 2020, 34, e2019GB006522.	4.9	12
66	The Dissolution of Olivine Added to Soil at 4°C: Implications for Enhanced Weathering in Cold Regions. Frontiers in Climate, 2022, 4, .	2.8	12
67	The lithium isotope response to the variable weathering of soils in Iceland. Geochimica Et Cosmochimica Acta, 2021, 313, 55-73.	3.9	11
68	Lithium isotope behaviour during basalt weathering experiments amended with organic acids. Geochimica Et Cosmochimica Acta, 2022, 328, 37-57.	3.9	11
69	The effect of shell secretion rate on Mg / Ca and Sr / Ca ratios in biogenic calcite as observed in belemnite rostrum. Biogeosciences, 2017, 14, 89-97.	a _{3.3}	10
70	Tourmaline Reference Materials for the <i>In Situ</i> Analysis of Oxygen and Lithium Isotope Ratio Compositions. Geostandards and Geoanalytical Research, 2021, 45, 97-119.	3.1	10
71	Calcium isotopes tracing secondary mineral formation in the high-relief Yalong River Basin, Southeast Tibetan Plateau. Science of the Total Environment, 2022, 827, 154315.	8.0	10
72	The lithium and magnesium isotope signature of olivine dissolution in soil experiments. Chemical Geology, 2021, 560, 120008.	3.3	9

#	Article	IF	CITATIONS
73	Seasonal variability in silicate weathering signatures recorded by Li isotopes in cave drip-waters. Geochimica Et Cosmochimica Acta, 2021, 312, 194-216.	3.9	9
74	Controls on the Mg Cycle in the Tropics: Insights from a Case Study at the Luquillo Critical Zone Observatory. Procedia Earth and Planetary Science, 2014, 10, 200-203.	0.6	8
75	Li Isotope Behaviour in the Low Salinity Zone During Estuarine Mixing. Procedia Earth and Planetary Science, 2014, 10, 204-207.	0.6	5
76	Experimental Investigation of Oxide Leaching Methods for Li Isotopes. Geostandards and Geoanalytical Research, 2022, 46, 493-518.	3.1	5
77	Hydrothermal and Cold Spring Water and Primary Productivity Effects on Magnesium Isotopes: Lake Myvatn, Iceland. Frontiers in Earth Science, 2020, 8, .	1.8	4
78	Inclusion of a suite of weathering tracers in the cGENIE Earth system model – muffin release v.0.9.23. Geoscientific Model Development, 2021, 14, 4187-4223.	3.6	0