Bogi Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skin epigenetics. Experimental Dermatology, 2021, 30, 1004-1008.	2.9	2
2	Capturing New Disease Genes in Psoriasis and Other Skin Diseases. Journal of Investigative Dermatology, 2021, 141, 1881-1884.	0.7	1
3	The circadian clock and diseases of the skin. FEBS Letters, 2021, 595, 2413-2436.	2.8	24
4	GRHL3 activates FSCN1 to relax cell-cell adhesions between migrating keratinocytes during wound reepithelialization. JCI Insight, 2021, 6, .	5.0	8
5	IRAK2 Has a Critical Role in Promoting Feed-Forward Amplification of Epidermal Inflammatory Responses. Journal of Investigative Dermatology, 2021, 141, 2436-2448.	0.7	11
6	Evaluation of Alvarez-Dominguez etÂal.: Circadian Entrainment Triggers Maturation of Human InÂVitro Islets. Cell Stem Cell, 2020, 26, 1.	11.1	15
7	Cycling Stem Cells Are Radioresistant and Regenerate the Intestine. Cell Reports, 2020, 32, 107952.	6.4	37
8	Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states. Nature Communications, 2020, 11, 5434.	12.8	33
9	Circadian control of interferon-sensitive gene expression in murine skin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5761-5771.	7.1	38
10	Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development. Developmental Cell, 2020, 52, 764-778.e4.	7.0	17
11	The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget's disease. Cell Research, 2020, 30, 854-872.	12.0	17
12	Murine interfollicular epidermal differentiation is gradualistic with GRHL3 controlling progression from stem to transition cell states. Nature Communications, 2020, 11, .	12.8	1
13	Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues. Developmental Biology, 2018, 435, 130-137.	2.0	24
14	Skin as a window to body-clock time. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12095-12097.	7.1	12
15	Embryonic Development of the Epidermis. , 2018, , .		1
16	Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice. Human Molecular Genetics, 2018, 27, 4218-4230.	2.9	21
17	Trithorax Genes in theÂControl of Keratinocyte Differentiation. Pancreatic Islet Biology, 2018, , 105-120.	0.3	0
18	Characterization of enhancers and the role of the transcription factor KLF7 in regulating corneal epithelial differentiation. Journal of Biological Chemistry, 2017, 292, 18937-18950.	3.4	27

Bogi Andersen

#	Article	IF	CITATIONS
19	Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Reports, 2017, 20, 1061-1072.	6.4	79
20	GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states. PLoS Genetics, 2017, 13, e1006745.	3.5	49
21	A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. ELife, 2017, 6, .	6.0	57
22	<scp>L</scp> mo4 and Other <scp>LIM</scp> domain only factors are necessary and sufficient for multiple retinal cell type development. Developmental Neurobiology, 2016, 76, 900-915.	3.0	10
23	Cofactors of LIM Domains Associate with Estrogen Receptor α to Regulate the Expression of Noncoding RNA H19 and Corneal Epithelial Progenitor Cell Function. Journal of Biological Chemistry, 2016, 291, 13271-13285.	3.4	20
24	Regulation of Cutaneous Stress Response Pathways by the Circadian Clock: From Molecular Pathways to Therapeutic Opportunities. , 2016, , 281-300.		3
25	InÂVivo Single-Cell Detection of Metabolic Oscillations in Stem Cells. Cell Reports, 2015, 10, 1-7.	6.4	118
26	The Circadian Clock in Skin. Journal of Biological Rhythms, 2015, 30, 163-182.	2.6	135
27	Dynamic Networking for Epidermal Differentiation. Developmental Cell, 2015, 32, 661-662.	7.0	13
28	Resting no more: reâ€defining telogen, the maintenance stage of the hair growth cycle. Biological Reviews, 2015, 90, 1179-1196.	10.4	125
29	Integrative ChIP-seq/Microarray Analysis Identifies a CTNNB1 Target Signature Enriched in Intestinal Stem Cells and Colon Cancer. PLoS ONE, 2014, 9, e92317.	2.5	41
30	The Co-factor of LIM Domains (CLIM/LDB/NLI) Maintains Basal Mammary Epithelial Stem Cells and Promotes Breast Tumorigenesis. PLoS Genetics, 2014, 10, e1004520.	3.5	13
31	Mammary Morphogenesis and Regeneration Require the Inhibition of EMT at Terminal End Buds by Ovol2 Transcriptional Repressor. Developmental Cell, 2014, 29, 59-74.	7.0	175
32	Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends in Molecular Medicine, 2014, 20, 559-570.	6.7	104
33	Dominant Mutations in GRHL3 Cause Van der Woude Syndrome and Disrupt Oral Periderm Development. American Journal of Human Genetics, 2014, 94, 23-32.	6.2	195
34	A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia. Journal of Clinical Investigation, 2014, 124, 5205-5218.	8.2	50
35	The estrogen-regulated anterior gradient 2 (AGR2) protein in breast cancer: a potential drug target and biomarker. Breast Cancer Research, 2013, 15, 204.	5.0	100
36	The Ets Transcription Factor EHF as a Regulator of Cornea Epithelial Cell Identity. Journal of Biological Chemistry, 2013, 288, 34304-34324.	3.4	52

BOGI ANDERSEN

#	Article	IF	CITATIONS
37	Epidermal stem cells ride the circadian wave. Genome Biology, 2013, 14, 140.	9.6	6
38	GRHL3/GET1 and Trithorax Group Members Collaborate to Activate the Epidermal Progenitor Differentiation Program. PLoS Genetics, 2012, 8, e1002829.	3.5	81
39	Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11758-11763.	7.1	211
40	The estrogen-responsive Agr2 gene regulates mammary epithelial proliferation and facilitates lobuloalveolar development. Developmental Biology, 2012, 369, 249-260.	2.0	26
41	Transcriptional Regulation of Epidermal Barrier Formation. Methods in Molecular Biology, 2011, 763, 51-71.	0.9	1
42	Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2â^'/â^' mice. Developmental Biology, 2010, 338, 270-279.	2.0	186
43	Clock genes, hair growth and aging. Aging, 2010, 2, 122-128.	3.1	55
44	The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation. EMBO Journal, 2009, 28, 1890-1903.	7.8	70
45	How the Skin Can Tell Time. Journal of Investigative Dermatology, 2009, 129, 1063-1066.	0.7	35
46	Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling. PLoS Genetics, 2009, 5, e1000573.	3.5	146
47	Grainyhead-like factor Get1/Grhl3 regulates formation of the epidermal leading edge during eyelid closure. Developmental Biology, 2008, 319, 56-67.	2.0	54
48	Co-factors of LIM domains (Clims/Ldb/Nli) regulate corneal homeostasis and maintenance of hair follicle stem cells. Developmental Biology, 2007, 312, 484-500.	2.0	25
49	The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Developmental Biology, 2006, 299, 122-136.	2.0	153
50	Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15955-15960.	7.1	80
51	Use of RT-PCR and DNA Microarrays to Characterize RNA Recovered by Non-Invasive Tape Harvesting of Normal and Inflamed Skin. Journal of Investigative Dermatology, 2004, 123, 159-167.	0.7	64
52	Identification and characterization of Grainyhead-like epithelial transactivator (GET-1), a novel mammalian Grainyhead-like factor. Developmental Dynamics, 2003, 226, 604-617.	1.8	63
53	RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex. Nature Genetics, 1999, 22, 394-399.	21.4	140
54	Icelandic Health Records. Science, 1998, 282, 1991-1991.	12.6	1

#	Article	IF	CITATIONS
55	Characterization of Skn-1a/i POU Domain Factors and Linkage to Papillomavirus Gene Expression. Journal of Biological Chemistry, 1997, 272, 15905-15913.	3.4	32
56	The Ames Dwarf Gene Is Required for Pit-1 Gene Activation. Developmental Biology, 1995, 172, 495-503.	2.0	160