
Joshua C Koch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-year, spatially extensive, watershed-scale synoptic stream chemistry and water quality conditions for six permafrost-underlain Arctic watersheds. Earth System Science Data, 2022, 14, 95-116.	9.9	9
2	Heterogeneous Patterns of Aged Organic Carbon Export Driven by Hydrologic Flow Paths, Soil Texture, Fire, and Thaw in Discontinuous Permafrost Headwaters. Global Biogeochemical Cycles, 2022, 36, .	4.9	5
3	Sensitivity of headwater streamflow to thawing permafrost and vegetation change in a warming Arctic. Environmental Research Letters, 2022, 17, 044074.	5.2	12
4	Nitrogen biogeochemistry in a boreal headwater stream network in interior Alaska. Science of the Total Environment, 2021, 764, 142906.	8.0	1
5	Permafrost Promotes Shallow Groundwater Flow and Warmer Headwater Streams. Water Resources Research, 2021, 57, e2020WR027463.	4.2	31
6	Storm‣cale and Seasonal Dynamics of Carbon Export From a Nested Subarctic Watershed Underlain by Permafrost. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006268.	3.0	2
7	Arctic insect emergence timing and composition differs across thaw ponds of varying morphology. Arctic, Antarctic, and Alpine Research, 2021, 53, 110-126.	1.1	1
8	Seasonality of solute flux and water source chemistry in a coastal glacierized watershed undergoing rapid change: Wolverine Glacier watershed, Alaska. Water Resources Research, 2021, 57, e2020WR028725.	4.2	4
9	Permafrost Hydrology Drives the Assimilation of Old Carbon by Stream Food Webs in the Arctic. Ecosystems, 2020, 23, 435-453.	3.4	20
10	Field-based method for assessing duration of infectivity for influenza A viruses in the environment. Journal of Virological Methods, 2020, 277, 113818.	2.1	6
11	Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska. Science of the Total Environment, 2020, 743, 140564.	8.0	13
12	Carbon Dioxide and Methane Flux in a Dynamic Arctic Tundra Landscape: Decadal‣cale Impacts of Ice Wedge Degradation and Stabilization. Geophysical Research Letters, 2020, 47, .	4.0	16
13	Soil Physical, Hydraulic, and Thermal Properties in Interior Alaska, USA: Implications for Hydrologic Response to Thawing Permafrost Conditions. Water Resources Research, 2019, 55, 4427-4447.	4.2	26
14	Nutrient Dynamics in Partially Drained Arctic Thaw Lakes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 440-452.	3.0	8
15	Comparative nest survival of three sympatric loon species breeding in the Arctic. Journal of Avian Biology, 2018, 49, e01671.	1.2	3
16	Patterns and controls of mercury accumulation in sediments from three thermokarst lakes on the Arctic Coastal Plain of Alaska. Aquatic Sciences, 2018, 80, 1.	1.5	13
17	Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environmental Research Letters, 2018, 13, 065011.	5.2	84
18	Ice Wedge Degradation and Stabilization Impact Water Budgets and Nutrient Cycling in Arctic Trough Ponds. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2604-2616.	3.0	26

Јозниа С Косн

#	Article	IF	CITATIONS
19	Tracerâ€based evidence of heterogeneity in subsurface flow and storage within a boreal hillslope. Hydrological Processes, 2017, 31, 2453-2463.	2.6	14
20	Landscape Effects of Wildfire on Permafrost Distribution in Interior Alaska Derived from Remote Sensing. Remote Sensing, 2016, 8, 654.	4.0	33
21	Surface water connectivity drives richness and composition of Arctic lake fish assemblages. Freshwater Biology, 2016, 61, 1090-1104.	2.4	31
22	Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophysical Research Letters, 2016, 43, 12,120.	4.0	99
23	Lateral and subsurface flows impact arctic coastal plain lake water budgets. Hydrological Processes, 2016, 30, 3918-3931.	2.6	16
24	Potential for realâ€ŧime understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams. Water Resources Research, 2015, 51, 6725-6738.	4.2	7
25	Pronounced chemical response of Subarctic lakes to climateâ€driven losses in surface area. Global Change Biology, 2015, 21, 1140-1152.	9.5	18
26	Life in the Main Channel: Long-Term Hydrologic Control of Microbial Mat Abundance in McMurdo Dry Valley Streams, Antarctica. Ecosystems, 2015, 18, 310-327.	3.4	49
27	Forecasting Wildlife Response to Rapid Warming in the Alaskan Arctic. BioScience, 2015, 65, 718-728.	4.9	29
28	Effect of permafrost thaw on CO ₂ and CH ₄ exchange in a western Alaska peatland chronosequence. Environmental Research Letters, 2014, 9, 085004.	5.2	45
29	Runoff sources and flow paths in a partially burned, upland boreal catchment underlain by permafrost. Water Resources Research, 2014, 50, 8141-8158.	4.2	54
30	Morphology-Dependent Water Budgets and Nutrient Fluxes in Arctic Thaw Ponds. Permafrost and Periglacial Processes, 2014, 25, 79-93.	3.4	31
31	Review: Groundwater in Alaska (USA). Hydrogeology Journal, 2013, 21, 25-39.	2.1	21
32	Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA). Hydrogeology Journal, 2013, 21, 93-106.	2.1	57
33	Hydrologic controls on the transport and cycling of carbon and nitrogen in a boreal catchment underlain by continuous permafrost. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 698-712.	3.0	74
34	Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model. Water Resources Research, 2011, 47, .	4.2	28
35	Effect of unsteady flow on nitrate loss in an oligotrophic, glacial meltwater stream. Journal of Geophysical Research, 2010, 115, .	3.3	23