Yiling Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043324/publications.pdf Version: 2024-02-01

YILING YI

#	Article	IF	CITATIONS
1	Nonequilibrium synthesis and processing approaches to tailor heterogeneity in 2D materials. , 2022, , 221-258.		1
2	Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics, 2022, 85, 046401.	20.1	74
3	Intrinsic Defects in MoS ₂ Grown by Pulsed Laser Deposition: From Monolayers to Bilayers. ACS Nano, 2021, 15, 2858-2868.	14.6	40
4	Strain-Induced Growth of Twisted Bilayers during the Coalescence of Monolayer MoS ₂ Crystals. ACS Nano, 2021, 15, 4504-4517.	14.6	19
5	Understanding Substrate-Guided Assembly in van der Waals Epitaxy by <i>in Situ</i> Laser Crystallization within a Transmission Electron Microscope. ACS Nano, 2021, 15, 8638-8652.	14.6	7
6	Excitonic Dynamics in Janus MoSSe and WSSe Monolayers. Nano Letters, 2021, 21, 931-937.	9.1	86
7	Giant enhancement of exciton diffusivity in two-dimensional semiconductors. Science Advances, 2020, 6, .	10.3	12
8	Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures. ACS Nano, 2020, 14, 3896-3906.	14.6	136
9	In-Plane and Interfacial Thermal Conduction of Two-Dimensional Transition-Metal Dichalcogenides. Physical Review Applied, 2020, 13, .	3.8	38
10	In situ laser reflectivity to monitor and control the nucleation and growth of atomically thin 2D materials*. 2D Materials, 2020, 7, 025048.	4.4	14
11	Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14, 256-262.	31.4	140
12	Room-Temperature Electron–Hole Liquid in Monolayer MoS ₂ . ACS Nano, 2019, 13, 10351-10358.	14.6	49
13	Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 38240-38246.	8.0	37
14	Near Bandâ€Edge Optical Excitation Leading to Catastrophic Ionization and Electron–Hole Liquid in Roomâ€Temperature Monolayer MoS 2. Physica Status Solidi (B): Basic Research, 2019, 256, 1900223.	1.5	9
15	Dense Electron–Hole Plasma Formation and Ultralong Charge Lifetime in Monolayer MoS ₂ via Material Tuning. Nano Letters, 2019, 19, 1104-1111.	9.1	41
16	Composite photonic platform based on 2D semiconductor monolayers. , 2019, , .		2
17	Surface-enhanced Raman scattering of monolayer transition metal dichalcogenides on Ag nanorod arrays. Optics Letters, 2019, 44, 5493.	3.3	5
18	Giant electro-refractive modulation of monolayer WS2 embedded in photonic structures. , 2018, , .		3

 $Giant\ electro-refractive\ modulation\ of\ monolayer\ WS2\ embedded\ in\ photonic\ structures.\ ,\ 2018,\ ,\ .$ 18

Yiling Yu

#	Article	IF	CITATIONS
19	Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers. Nano Letters, 2017, 17, 3613-3618.	9.1	81
20	Enhancing Multifunctionalities of Transition-Metal Dichalcogenide Monolayers <i>via</i> Cation Intercalation. ACS Nano, 2017, 11, 9390-9396.	14.6	35
21	Van der Waals Force Isolation of Monolayer MoS ₂ . Advanced Materials, 2016, 28, 10055-10060.	21.0	34
22	Atomically Thin MoS ₂ Narrowband and Broadband Light Superabsorbers. ACS Nano, 2016, 10, 7493-7499.	14.6	82
23	Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Physical Review B, 2016, 93, .	3.2	129
24	Engineering Substrate Interactions for High Luminescence Efficiency of Transitionâ€Metal Dichalcogenide Monolayers. Advanced Functional Materials, 2016, 26, 4733-4739.	14.9	154
25	Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films. Scientific Reports, 2015, 5, 16996.	3.3	155
26	Deterministic phase engineering for optical Fano resonances with arbitrary lineshape and frequencies. Optics Express, 2015, 23, 19154.	3.4	7
27	Leaky mode engineering: A general design principle for dielectric optical antenna solar absorbers. Optics Communications, 2014, 314, 79-85.	2.1	23
28	Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few-Layer MoS ₂ Films onto Arbitrary Substrates. ACS Nano, 2014, 8, 11522-11528.	14.6	367
29	Semiconductor Solar Superabsorbers. Scientific Reports, 2014, 4, 4107.	3.3	13
30	General Modal Properties of Optical Resonances in Subwavelength Nonspherical Dielectric Structures. Nano Letters, 2013, 13, 3559-3565.	9.1	69
31	The phase shift of light scattering at sub-wavelength dielectric structures. Optics Express, 2013, 21, 5957.	3.4	10
32	Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures. Optics Express, 2012, 20, 13847.	3.4	64
33	Dielectric Core–Shell Optical Antennas for Strong Solar Absorption Enhancement. Nano Letters, 2012, 12, 3674-3681.	9.1	106