
Todd R Klaenhammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10432995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 1993, 12, 39-85.	3.9	1,634
2	Bacteriocins of lactic acid bacteria. Biochimie, 1988, 70, 337-349.	1.3	1,176
3	A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 2003, 31, 1805-1812.	6.5	634
4	Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3906-3912.	3.3	565
5	S layer protein A of <i>Lactobacillus acidophilus</i> NCFM regulates immature dendritic cell and T cell functions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19474-19479.	3.3	515
6	Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 2015, 6, 8322.	5.8	488
7	New Scientific Paradigms for Probiotics and Prebiotics. Journal of Clinical Gastroenterology, 2003, 37, 105-118.	1.1	413
8	Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2880-2885.	3.3	401
9	Genome-scale analyses of health-promoting bacteria: probiogenomics. Nature Reviews Microbiology, 2009, 7, 61-71.	13.6	400
10	Rapid Mini-Prep Isolation of High-Quality Plasmid DNA from <i>Lactococcus</i> and <i>Lactobacillus</i> spp. Applied and Environmental Microbiology, 1993, 59, 2730-2733.	1.4	371
11	Functional Analysis of Putative Adhesion Factors in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2005, 71, 8344-8351.	1.4	350
12	Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential applications. FEMS Microbiology Ecology, 2005, 52, 145-152.	1.3	289
13	PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics, 2005, 6, 60.	1.2	286
14	The impact of probiotics and prebiotics on the immune system. Nature Reviews Immunology, 2012, 12, 728-734.	10.6	247
15	Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8957-8962.	3.3	245
16	Regulation of induced colonic inflammation by <i>Lactobacillus acidophilus</i> deficient in lipoteichoic acid. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4623-4630.	3.3	235
17	Selection and design of probiotics. International Journal of Food Microbiology, 1999, 50, 45-57.	2.1	233
18	High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening.	1.0	205

Gene, 1993, 137, 227-231.

2

#	Article	IF	CITATIONS
19	Conjugal Transfer of Plasmid-Encoded Determinants for Bacteriocin Production and Immunity in Lactobacillus acidophilus 88. Applied and Environmental Microbiology, 1987, 53, 553-560.	1.4	199
20	Association of a 13.6-Megadalton Plasmid in <i>Pediococcus pentosaceus</i> with Bacteriocin Activity. Applied and Environmental Microbiology, 1985, 50, 1538-1541.	1.4	196
21	Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E367-E375.	3.3	193
22	Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3816-3821.	3.3	185
23	Evolution of a Lytic Bacteriophage via DNA Acquisition from the <i>Lactococcus lactis</i> Chromosome. Applied and Environmental Microbiology, 1994, 60, 1832-1841.	1.4	183
24	Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiology Reviews, 2005, 29, 393-409.	3.9	176
25	Anti-inflammatory properties of <i>Lactobacillus gasseri</i> expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. American Journal of Physiology - Renal Physiology, 2007, 293, G729-G738.	1.6	175
26	Sensitivity and Resistance of Listeria monocytogenes ATCC 19115, Scott A, and UAL500 to Nisin. Journal of Food Protection, 1991, 54, 836-840.	0.8	168
27	Shared mechanisms among probiotic taxa: implications for general probiotic claims. Current Opinion in Biotechnology, 2018, 49, 207-216.	3.3	165
28	Genomic and phenotypic evidence for probiotic influences of <i>Lactobacillus gasseri</i> on human health. FEMS Microbiology Reviews, 2013, 37, 915-935.	3.9	154
29	Analysis of the Genome Sequence of <i>Lactobacillus gasseri</i> ATCC 33323 Reveals the Molecular Basis of an Autochthonous Intestinal Organism. Applied and Environmental Microbiology, 2008, 74, 4610-4625.	1.4	152
30	Analysis, Characterization, and Loci of the tuf Genes in Lactobacillus and Bifidobacterium Species and Their Direct Application for Species Identification. Applied and Environmental Microbiology, 2003, 69, 6908-6922.	1.4	150
31	The genomics of lactic acid bacteria. Trends in Microbiology, 2007, 15, 546-553.	3.5	145
32	Identification and Inactivation of Genetic Loci Involved with Lactobacillus acidophilus Acid Tolerance. Applied and Environmental Microbiology, 2004, 70, 5315-5322.	1.4	144
33	Genetic Mechanisms of Prebiotic Oligosaccharide Metabolism in Probiotic Microbes. Annual Review of Food Science and Technology, 2015, 6, 137-156.	5.1	144
34	Characterization of a Novel Bile-Inducible Operon Encoding a Two-Component Regulatory System in Lactobacillus acidophilus. Journal of Bacteriology, 2007, 189, 4624-4634.	1.0	143
35	Development and Application of a <i>upp</i> -Based Counterselective Gene Replacement System for the Study of the S-Layer Protein SlpX of <i>Lactobacillus acidophilus</i> NCFM. Applied and Environmental Microbiology, 2009, 75, 3093-3105.	1.4	141
36	Abating colon cancer polyposis by <i>Lactobacillus acidophilus</i> deficient in lipoteichoic acid. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10462-10467.	3.3	139

#	Article	IF	CITATIONS
37	Molecular Characterization of a Plasmid-Borne (pGT633) Erythromycin Resistance Determinant (ermGT) from Lactobacillus reuteri 100-63. Plasmid, 1994, 31, 60-71.	0.4	137
38	Functional Roles of Aggregation-Promoting-Like Factor in Stress Tolerance and Adherence of <i>Lactobacillus acidophilus</i> NCFM. Applied and Environmental Microbiology, 2010, 76, 5005-5012.	1.4	134
39	Effect of Treatment Conditions on Nisin Inactivation of Gram-negative Bacteria. Journal of Food Protection, 1992, 55, 763-766.	0.8	128
40	CRISPR-based screening of genomic island excision events in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8076-8081.	3.3	125
41	Phage Resistance Mechanisms in Lactic Acid Bacteria. International Dairy Journal, 1998, 8, 207-226.	1.5	122
42	Microarray Analysis of a Two-Component Regulatory System Involved in Acid Resistance and Proteolytic Activity in Lactobacillus acidophilus. Applied and Environmental Microbiology, 2005, 71, 5794-5804.	1.4	120
43	Genetic Analysis of Two Bile Salt Hydrolase Activities in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2005, 71, 4925-4929.	1.4	119
44	Engineered bacteriophage-defence systems in bioprocessing. Nature Reviews Microbiology, 2006, 4, 395-404.	13.6	118
45	A general method for plasmid isolation in lactobacilli. Current Microbiology, 1984, 10, 23-28.	1.0	111
46	Identification of the pH-inducible, proton-translocating F1FO-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Molecular Microbiology, 2002, 33, 1152-1161.	1.2	111
47	Rapid Method To Characterize Lactococcal Bacteriophage Genomes. Applied and Environmental Microbiology, 1991, 57, 283-288.	1.4	109
48	<scp>SIGNR</scp> 3â€dependent immune regulation by <i>Lactobacillus acidophilus</i> surface layer protein A inÂcolitis. EMBO Journal, 2015, 34, 881-895.	3.5	107
49	Plasmid-directed mechanisms for bacteriophage defense in lactic streptococci. FEMS Microbiology Letters, 1987, 46, 313-325.	0.7	104
50	Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. Applied and Environmental Microbiology, 2004, 70, 4702-4710.	1.4	102
51	Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiology Reviews, 2005, 29, 393-409.	3.9	101
52	Transcriptional and functional analysis of galactooligosaccharide uptake by <i>lacS</i> in <i>Lactobacillus acidophilus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17785-17790.	3.3	99
53	Probiotics, prebiotics, and the host microbiome: the science of translation. Annals of the New York Academy of Sciences, 2013, 1306, 1-17.	1.8	98
54	<i>Lactobacillus acidophilus</i> Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals. MBio, 2017, 8, .	1.8	90

#	Article	IF	CITATIONS
55	Characterization of Phage-Sensitive Mutants from a Phage-Insensitive Strain of <i>Streptococcus lactis</i> : Evidence for a Plasmid Determinant that Prevents Phage Adsorption. Applied and Environmental Microbiology, 1983, 46, 1125-1133.	1.4	86
56	Role of Transporter Proteins in Bile Tolerance of <i>Lactobacillus acidophilus</i> . Applied and Environmental Microbiology, 2009, 75, 6013-6016.	1.4	85
57	Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. Journal of Medical Microbiology, 2009, 58, 663-670.	0.7	85
58	Interactions of Bacteriophages with Lactic Streptococci. Advances in Applied Microbiology, 1984, , 1-29.	1.3	81
59	Abortive Phage Resistance Mechanism AbiZ Speeds the Lysis Clock To Cause Premature Lysis of Phage-Infected Lactococcus lactis. Journal of Bacteriology, 2007, 189, 1417-1425.	1.0	81
60	Stuck in the Middle: Fibronectin-Binding Proteins in Gram-Positive Bacteria. Frontiers in Microbiology, 2016, 7, 1504.	1.5	79
61	Characterization of the tre Locus and Analysis of Trehalose Cryoprotection in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2006, 72, 1218-1225.	1.4	77
62	Molecular Characterization of Three Small Isometric-Headed Bacteriophages Which Vary in Their Sensitivity to the Lactococcal Phage Resistance Plasmid pTR2030. Applied and Environmental Microbiology, 1991, 57, 1346-1353.	1.4	77
63	Transcriptional and Functional Analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA Transferase Genes from Lactobacillus acidophilus. Applied and Environmental Microbiology, 2006, 72, 1891-1899.	1.4	75
64	Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Applied and Environmental Microbiology, 2006, 72, 3130-3146.	1.4	75
65	Bacteriophage Resistance Conferred on Lactic Streptococci by the Conjugative Plasmid pTR2030: Effects on Small Isometric-, Large Isometric-, and Prolate-Headed Phages. Applied and Environmental Microbiology, 1986, 51, 1272-1277.	1.4	75
66	Effect of Increasing the Copy Number of Bacteriophage Origins of Replication, in <i>trans</i> , on Incoming-Phage Proliferation. Applied and Environmental Microbiology, 1993, 59, 2449-2456.	1.4	75
67	Calcium Alginate-Immobilized Cultures of Lactic Streptococci are Protected from Bacteriophages. Journal of Dairy Science, 1987, 70, 1121-1127.	1.4	74
68	Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli. Applied and Environmental Microbiology, 2016, 82, 134-145.	1.4	74
69	Identification and Characterization of Leuconostoc fallax Strains Isolated from an Industrial Sauerkraut Fermentation. Applied and Environmental Microbiology, 2002, 68, 2877-2884.	1.4	73
70	Differentiation of Two Abortive Mechanisms by Using Monoclonal Antibodies Directed toward Lactococcal Bacteriophage Capsid Proteins. Applied and Environmental Microbiology, 1993, 59, 208-212.	1.4	73
71	Developments in nisin research. Food Research International, 1992, 25, 57-66.	2.9	71
72	Genetic Analysis of Chromosomal Regions of Lactococcus lactis Acquired by Recombinant Lytic Phages. Applied and Environmental Microbiology, 2000, 66, 895-903.	1.4	71

#	Article	IF	CITATIONS
73	Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM. PLoS ONE, 2012, 7, e44409.	1.1	71
74	Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2016, 82, 2676-2685.	1.4	71
75	Conjugal Transfer of Bacteriophage Resistance Determinants on pTR2030 into <i>Streptococcus cremoris</i> Strains. Applied and Environmental Microbiology, 1986, 51, 1264-1271.	1.4	71
76	Targeted expression of anthrax protective antigen by <i>Lactobacillus gasseri</i> as an anthrax vaccine. Future Microbiology, 2010, 5, 1289-1296.	1.0	69
77	A Strategy for Rotation of Different Bacteriophage Defenses in a Lactococcal Single-Strain Starter Culture System. Applied and Environmental Microbiology, 1993, 59, 365-372.	1.4	69
78	Electrotransformation ofLactobacillusacidophilus Group A1. FEMS Microbiology Letters, 1996, 138, 233-237.	0.7	68
79	GAMOLA: A New Local Solution for Sequence Annotation and Analyzing Draft and Finished Prokaryotic Genomes. OMICS A Journal of Integrative Biology, 2003, 7, 161-169.	1.0	68
80	Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microbial Cell Factories, 2014, 13, 94.	1.9	68
81	Functional Genomics of Probiotic Lactobacilli. Journal of Clinical Gastroenterology, 2008, 42, S160-S162.	1.1	67
82	Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): a randomized, double-blind clinical trial. Nutrition Journal, 2013, 12, 160.	1.5	66
83	Effects of genetic, processing, or product formulation changes on efficacy and safety of probiotics. Annals of the New York Academy of Sciences, 2014, 1309, 1-18.	1.8	66
84	Restriction/Modification Systems and Restriction Endonucleases Are More Effective on Lactococcal Bacteriophages That Have Emerged Recently in the Dairy Industry. Applied and Environmental Microbiology, 1993, 59, 197-202.	1.4	66
85	Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactisBl-04. BMC Genomics, 2013, 14, 312.	1.2	65
86	The <i>groESL</i> Chaperone Operon of <i>Lactobacillus johnsonii</i> . Applied and Environmental Microbiology, 1999, 65, 3033-3041.	1.4	63
87	Bacteriophage resistance inLactococcus. Molecular Biotechnology, 1995, 4, 297-314.	1.3	61
88	The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. International Dairy Journal, 2010, 20, 262-268.	1.5	61
89	Genomic Evolution of Domesticated Microorganisms. Annual Review of Food Science and Technology, 2010, 1, 397-414.	5.1	60
90	Identification and phenotypic characterization of the cell-division protein CdpA. Gene, 2004, 342, 189-197.	1.0	59

TODD R KLAENHAMMER

#	Article	IF	CITATIONS
91	Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria. Expert Review of Vaccines, 2008, 7, 163-174.	2.0	59
92	Development of an Expression Strategy Using a Lytic Phage to Trigger Explosive Plasmid Amplification and Gene Expressionâ€. Nature Biotechnology, 1996, 14, 82-87.	9.4	58
93	Molecular Cloning and Deoxyribonucleic Acid Polymorphisms in Lactobacillus acidophilus and Lactobacillus gasseri. Journal of Dairy Science, 1991, 74, 3293-3302.	1.4	57
94	Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector. Vaccine Journal, 2011, 18, 1834-1844.	3.2	57
95	Expression of Antisense RNA Targeted against Streptococcus thermophilus Bacteriophages. Applied and Environmental Microbiology, 2002, 68, 588-596.	1.4	56
96	Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie Van Leeuwenhoek, 2014, 106, 141-156.	0.7	56
97	Characterization of Six Leuconostoc fallax Bacteriophages Isolated from an Industrial Sauerkraut Fermentation. Applied and Environmental Microbiology, 2002, 68, 5452-5458.	1.4	54
98	Functional and phenotypic characterization of a protein from Lactobacillus acidophilus involved in cell morphology, stress tolerance and adherence to intestinal cells. Microbiology (United Kingdom), 2010, 156, 3360-3367.	0.7	54
99	Functional Activities of Lactobacillus Probiotics: Genetic Mandate. International Dairy Journal, 1998, 8, 497-505.	1.5	53
100	A functional glycogen biosynthesis pathway in <i><scp>L</scp>actobacillus acidophilus</i> : expression and analysis of the <scp><i>glg</i></scp> operon. Molecular Microbiology, 2013, 89, 1187-1200.	1.2	52
101	Transposable Elements in Lactococci: A Review. Journal of Dairy Science, 1993, 76, 1-19.	1.4	51
102	Construction of vectors for inducible and constitutive gene expression in <i>Lactobacillus</i> . Microbial Biotechnology, 2011, 4, 357-367.	2.0	50
103	Probiotic Bacteria: Today and Tomorrow. Journal of Nutrition, 2000, 130, 415S-416S.	1.3	48
104	Genetics of intestinal lactobacilli. International Dairy Journal, 1995, 5, 1019-1058.	1.5	47
105	Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Frontiers in Microbiology, 2013, 4, 73.	1.5	47
106	An Explosive Antisense RNA Strategy for Inhibition of a Lactococcal Bacteriophage. Applied and Environmental Microbiology, 2000, 66, 310-319.	1.4	45
107	Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production. Gut Microbes, 2012, 3, 523-529.	4.3	45
108	Analysis of treatment effects on the microbial ecology of the human intestine. FEMS Microbiology Ecology, 2006, 57, 239-250.	1.3	44

TODD R KLAENHAMMER

#	Article	IF	CITATIONS
109	Dissimilar Properties of Two Recombinant Lactobacillus acidophilus Strains Displaying Salmonella FliC with Different Anchoring Motifs. Applied and Environmental Microbiology, 2011, 77, 6587-6596.	1.4	43
110	Phage Resistance in a Phage-Insensitive Strain of <i>Streptococcus lactis</i> : Temperature-Dependent Phage Development and Host-Controlled Phage Replication. Applied and Environmental Microbiology, 1984, 47, 979-985.	1.4	43
111	Bacteriophage Defense Systems and Strategies for Lactic Acid Bacteria. Advances in Applied Microbiology, 2004, 56, 331-378.	1.3	42
112	New insights into probiotic mechanisms. Gut Microbes, 2013, 4, 94-100.	4.3	42
113	Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. Microbiology (United) Tj ETQq1	1 0.784314 0.7	$rg_{42}^{BT}/Overic$
114	Genetic Characterization of Multiple Mechanisms of Phage Defense from a Prototype Phage-Insensitive Strain, Lactococcus lactis ME2. Journal of Dairy Science, 1989, 72, 3429-3443.	1.4	41
115	Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage φadh. Gene, 1993, 126, 61-66.	1.0	41
116	The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM. Frontiers in Microbiology, 2017, 8, 1185.	1.5	39
117	Phenotypic Consequences of Altering the Copy Number of <i>abiA</i> , a Gene Responsible for Aborting Bacteriophage Infections in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 1994, 60, 1129-1136.	1.4	39
118	Molecular Characterization of a Phage-Inducible Middle Promoter and Its Transcriptional Activator from the Lactococcal Bacteriophage [†31. Journal of Bacteriology, 1998, 180, 921-931.	1.0	39
119	Efficacy of Optimized Nisin-Based Treatments to Inhibit Salmonella typhimurium and Extend Shelf Life of Broiler Carcassesâ€. Journal of Food Protection, 1995, 58, 1077-1082.	0.8	38
120	Genomic features of Lactobacillus species. Frontiers in Bioscience - Landmark, 2009, Volume, 1362.	3.0	37
121	Development of bacteriophage-resistant strains of lactic acid bacteria. Biochemical Society Transactions, 1991, 19, 675-681.	1.6	35
122	Analysis of the Genetic Switch and Replication Region of a P335-Type Bacteriophage with an Obligate Lytic Lifestyle on Lactococcus lactis. Applied and Environmental Microbiology, 2001, 67, 1128-1139.	1.4	35
123	The Impact of Omic Technologies on the Study of Food Microbes. Annual Review of Food Science and Technology, 2011, 2, 353-371.	5.1	35
124	Genome Sequence and Characteristics of Lrm1, a Prophage from Industrial <i>Lactobacillus rhamnosus</i> Strain M1. Applied and Environmental Microbiology, 2008, 74, 4601-4609.	1.4	34
125	Deletion-based escape of CRISPR-Cas9 targeting in Lactobacillus gasseri. Microbiology (United) Tj ETQq1 1 0.7	84314 rgBT 0.7	Overlock 1
126	Plasmid-Induced Abortive Infection in Lactococci: A Review. Journal of Dairy Science, 1990, 73, 2239-2251.	1.4	33

#	Article	IF	CITATIONS
127	Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein. PLoS ONE, 2015, 10, e0141713.	1.1	33
128	Plasmid Heterogeneity in Streptococcus cremoris M12R: Effects on Proteolytic Activity and Host-Dependent Phage Replication. Journal of Dairy Science, 1986, 69, 2227-2236.	1.4	32
129	Directed Chromosomal Integration and Expression of the Reporter Gene <i>gusA3</i> in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2011, 77, 7365-7371.	1.4	31
130	SpecificLactobacillusspecies differentially activate Toll-like receptors and downstream signals in dendritic cells. Expert Review of Vaccines, 2008, 7, 1155-1164.	2.0	30
131	Antisense RNA Targeting of Primase Interferes with Bacteriophage Replication in Streptococcus thermophilus. Applied and Environmental Microbiology, 2004, 70, 1735-1743.	1.4	29
132	Influence of the Dairy Environment on Gene Expression and Substrate Utilization in Lactic Acid Bacteria1, ,. Journal of Nutrition, 2007, 137, 748S-750S.	1.3	29
133	Differential proteome and cellular adhesion analyses of the probiotic bacterium <i>Lactobacillus acidophilus</i> NCFM grown on raffinose – an emerging prebiotic. Proteomics, 2016, 16, 1361-1375.	1.3	29
134	Marker-free chromosomal integration of the manganese superoxide dismutase gene (sodA) fromStreptococcus thermophilusintoLactobacillus gasseri. FEMS Microbiology Letters, 2005, 246, 91-101.	0.7	28
135	Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus. Applied and Environmental Microbiology, 2016, 82, 6091-6101.	1.4	28
136	AcmB Is an S-Layer-Associated β- N -Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 2016, 82, 5687-5697.	1.4	27
137	Influence of Calcium and Manganese on Dechaining of <i>Lactobacillus bulgaricus</i> . Applied and Environmental Microbiology, 1983, 46, 785-792.	1.4	27
138	Inducible gene expression systems inLactococcus lactis. Molecular Biotechnology, 1998, 9, 127-139.	1.3	26
139	An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus. Applied and Environmental Microbiology, 2017, 83, .	1.4	25
140	A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species Gene, 1998, 212, 5-11.	1.0	23
141	Leaky Lactococcus Cultures That Externalize Enzymes and Antigens Independently of Culture Lysis and Secretion and Export Pathways. Applied and Environmental Microbiology, 2001, 67, 251-259.	1.4	23
142	Modification of Lactobacillus β-glucuronidase activity by random mutagenesis. Gene, 2007, 389, 122-127.	1.0	23
143	Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatalysis and Biotransformation, 2013, 31, 226-235.	1.1	23
144	Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber. International Journal of Food Microbiology, 2018, 280, 46-56.	2.1	23

#	Article	IF	CITATIONS
145	Cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lactococcus lactis and Lactobacillus gasseri. Molecular Genetics and Genomics, 1993, 239, 33-40.	2.4	21
146	Production of Monoclonal Antibodies against the Major Capsid Protein of the <i>Lactococcus</i> Bacteriophage ul36 and Development of an Enzyme-Linked Immunosorbent Assay for Direct Phage Detection in Whey and Milk. Applied and Environmental Microbiology, 1993, 59, 2034-2040.	1.4	21
147	Common Elements Regulating Gene Expression in Temperate and Lytic Bacteriophages of <i>Lactococcus</i> Species. Applied and Environmental Microbiology, 1998, 64, 1147-1152.	1.4	21
148	Bacteriophage Resistance Plasmid pTR2030 Inhibits Lytic Infection of r ₁ t Temperate Bacteriophage but Not Induction of r ₁ t Prophage in <i>Streptococcus cremoris</i> R1. Applied and Environmental Microbiology, 1987, 53, 385-389.	1.4	20
149	Characterization of Restriction-Modification Plasmids from Lactococcus lactis ssp. cremoris and Their EffectsWhen Combined with pTR2030. Journal of Dairy Science, 1991, 74, 1133-1144.	1.4	19
150	Molecular characterization and functional analysis of the manganese-containing superoxide dismutase gene (sodA) from Streptococcus thermophilus AO54. Archives of Biochemistry and Biophysics, 2003, 420, 103-113.	1.4	19
151	Recent insight in α-glucan metabolism in probiotic bacteria. Biologia (Poland), 2014, 69, 713-721.	0.8	19
152	Inactivation of Food-borne Pathogens with Magainin Peptidesa. Journal of Food Protection, 1995, 58, 381-388.	0.8	18
153	Lactococcus lactis Lytic Bacteriophages of the P335 Group Are Inhibited by Overexpression of a Truncated CI Repressor. Journal of Bacteriology, 2002, 184, 6532-6544.	1.0	18
154	Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus. Frontiers in Microbiology, 2017, 8, 553.	1.5	16
155	Inhibition of bacteriophage replication in Streptococcus thermophilus by subunit poisoning of primase. Microbiology (United Kingdom), 2007, 153, 3295-3302.	0.7	15
156	Integrative Food Grade Expression System for Lactic Acid Bacteria. Methods in Molecular Biology, 2011, 765, 373-387.	0.4	14
157	Influence of Exposure Time on Gene Expression by Human Intestinal Epithelial Cells Exposed to Lactobacillus acidophilus. Applied and Environmental Microbiology, 2012, 78, 5028-5032.	1.4	14
158	<i>In Vivo</i> Transcriptome of Lactobacillus acidophilus and Colonization Impact on Murine Host Intestinal Gene Expression. MBio, 2021, 12, .	1.8	14
159	Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform. PLoS ONE, 2018, 13, e0196950.	1.1	13
160	Response to phage infection of immobilized lactococci during continuous acidification and inoculation of skim milk. Journal of Dairy Research, 1994, 61, 537-544.	0.7	12
161	Intracellular and Extracellular Expression of Bacillus thuringiensis Crystal Protein Cry5B in Lactococcus lactis for Use as an Anthelminthic. Applied and Environmental Microbiology, 2016, 82, 1286-1294.	1.4	11
162	Plasmid Transduction Using Bacteriophage Φadh for Expression of CC Chemokines by <i>Lactobacillus gasseri</i> ADH. Applied and Environmental Microbiology, 2010, 76, 3878-3885.	1.4	10

TODD R KLAENHAMMER

#	Article	IF	CITATIONS
163	Group-specific comparison of four lactobacilli isolated from human sources using differential blast analysis. Genes and Nutrition, 2011, 6, 319-340.	1.2	10
164	Probiotics and Prebiotics. , 2019, , 831-854.		10
165	Helveticin J, A Large Heat-Labile Bacteriocin from Lactobacillus Helveticus. , 1994, , 397-418.		9
166	The bacteriophage resistance plasmid pTR2030 forms high-molecular-weight multimers in lactococci. Plasmid, 1991, 25, 105-112.	0.4	8
167	Development of an integration mutagenesis system in <i>Lactobacillus gasseri</i> . Gut Microbes, 2014, 5, 326-525.	4.3	8
168	Insertional mutagenesis in Lactococcus lactis subsp. lactis mediated by IS946*. FEMS Microbiology Letters, 1993, 107, 43-48.	0.7	7
169	Lactacin F, A Small Hydrophobic Heat-Stable Bacteriocin from Lactobacillus Johnsonii. , 1994, , 377-396.		7
170	A Snapshot into the Metabolism of Isomalto-oligosaccharides in Probiotic Bacteria. Journal of Applied Glycoscience (1999), 2013, 60, 95-100.	0.3	5
171	LACTOBACILLUS Lactobacillus Acidophilus. , 1999, , 1151-1157.		4
172	Genomic Perspectives on Probiotic Lactic Acid Bacteria. Bioscience and Microflora, 2005, 24, 31-33.	0.5	3
173	Genomics of Probiotic Bacteria. , 2009, , 681-723.		3
174	Genomics of Lactic Acid Bacteria: The Post-Genomics Challenge-From Sequence to Function. , 0, , 35-56.		3
175	Electrotransformation of Lactobacillus acidophilus Group A1. FEMS Microbiology Letters, 1996, 138, 233-237.	0.7	3
176	Use of genetically modified microbes for human health. Microbial Ecology in Health and Disease, 2006, 18, 75-76.	3.8	2
177	Bacteria get vaccinated. Nature, 2014, 513, 175-176.	13.7	2
178	The Genetics of Phage Resistance in Lactococcus lactis. , 2003, , 291-315.		2
179	The Genetics of Phage Resistance in Lactococcus lactis. , 2003, , 291-315.		2
180	Probiotics and Prebiotics. , 0, , 949-971.		1

0

#	Article	IF	CITATIONS
181	Functional Genomics of Lactic Acid Bacteria. , 0, , 193-204.		0

182 Genomics and Proteomics of Foodborne Microorganisms. , 0, , 973-996.