Waldemar Priebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10432053/publications.pdf

Version: 2024-02-01

53794 69250 6,887 156 45 77 citations h-index g-index papers 156 156 156 8767 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	X-ray wavefunction refinement and comprehensive structural studies on bromo-substituted analogues of 2-deoxy- <scp>d</scp> -glucose in solid state and solution. RSC Advances, 2022, 12, 8345-8360.	3.6	3
2	A first-in-human Phase I trial of the oral p-STAT3 inhibitor WP1066 in patients with recurrent malignant glioma. CNS Oncology, 2022, 11, CNS87.	3.0	15
3	Experimental and Computational Studies on Structure and Energetic Properties of Halogen Derivatives of 2-Deoxy-D-Glucose. International Journal of Molecular Sciences, 2021, 22, 3720.	4.1	5
4	Synergistic Anticancer Effect of Glycolysis and Histone Deacetylases Inhibitors in a Glioblastoma Model. Biomedicines, 2021, 9, 1749.	3.2	7
5	Radiation with STAT3 Blockade Triggers Dendritic Cell–T cell Interactions in the Glioma Microenvironment and Therapeutic Efficacy. Clinical Cancer Research, 2020, 26, 4983-4994.	7.0	38
6	Drug Conjugates for Targeting Eph Receptors in Glioblastoma. Pharmaceuticals, 2020, 13, 77.	3.8	7
7	Hyperpolarized Pyruvate MR Spectroscopy Depicts Glycolytic Inhibition in a Mouse Model of Glioma. Radiology, 2019, 293, 168-173.	7.3	15
8	Bis-anthracycline WP760 abrogates melanoma cell growth by transcription inhibition, p53 activation and IGF1R downregulation. Investigational New Drugs, 2017, 35, 545-555.	2.6	3
9	Modeling Stroma-Induced Drug Resistance in a Tissue-Engineered Tumor Model of Ewing Sarcoma. Tissue Engineering - Part A, 2017, 23, 80-89.	3.1	24
10	Novel molecular multilevel targeted antitumor agents. Cancer Translational Medicine, 2017, 3, 69.	0.2	11
11	IGF-1R and mTOR Blockade: Novel Resistance Mechanisms and Synergistic Drug Combinations for Ewing Sarcoma. Journal of the National Cancer Institute, 2016, 108, djw182.	6.3	49
12	Autophagy modulates the effects of bisâ€anthracycline WP 631 on p53â€deficient prostate cancer cells. Journal of Cellular and Molecular Medicine, 2015, 19, 786-798.	3.6	4
13	Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells. Oncotarget, 2015, 6, 10016-10029.	1.8	50
14	Bromine Atom Interactions in Biologically Active Acrylamide Derivatives. Crystal Growth and Design, 2015, 15, 2632-2642.	3.0	5
15	Inhibition of the JAK2/STAT3 Pathway Reduces Gastric Cancer Growth In Vitro and In Vivo. PLoS ONE, 2014, 9, e95993.	2.5	77
16	Therapeutic targets in subependymoma. Journal of Neuroimmunology, 2014, 277, 168-175.	2.3	21
17	Integrative Biological Analysis For Neuropsychopharmacology. Neuropsychopharmacology, 2014, 39, 5-23.	5.4	17
18	Regulation of HGF Expression by Î"EGFR-Mediated c-Met Activation in Glioblastoma Cells. Neoplasia, 2013, 15, 73-IN21.	5. 3	32

#	Article	IF	Citations
19	Development of novel molecular probes of the Rio1 atypical protein kinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1292-1301.	2.3	14
20	d-Glucose and d-mannose-based metabolic probes. Part 3: Synthesis of specifically deuterated d-glucose, d-mannose, and 2-deoxy-d-glucose. Carbohydrate Research, 2013, 368, 111-119.	2.3	19
21	Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro-Oncology, 2012, 14, 1136-1145.	1.2	73
22	The tumor microenvironment expression of pâ€STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. International Journal of Cancer, 2012, 131, 8-17.	5.1	36
23	Novel small molecular inhibitors disrupt the JAK/STAT3 and FAK signaling pathways and exhibit a potent antitumor activity in glioma cells. Cancer Biology and Therapy, 2012, 13, 657-670.	3.4	35
24	Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. Journal of Neuro-Oncology, 2012, 107, 487-501.	2.9	64
25	Changes in gene expression induced by Sp1 knockdown differ from those caused by challenging Sp1 binding to gene promoters. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 327-336.	1.9	3
26	A novel small molecule deubiquitinase inhibitor blocks Jak2 signaling through Jak2 ubiquitination. Cellular Signalling, 2011, 23, 2076-2085.	3.6	38
27	A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer. Cancer Chemotherapy and Pharmacology, 2011, 68, 1033-1044.	2.3	15
28	Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer, 2011, 117, 2926-2938.	4.1	112
29	Hypoxia Potentiates Glioma-Mediated Immunosuppression. PLoS ONE, 2011, 6, e16195.	2.5	177
30	Quantitative Phosphoproteomic Analysis of the STAT3/IL-6/HIF1α Signaling Network: An Initial Study in GSC11 Glioblastoma Stem Cells. Journal of Proteome Research, 2010, 9, 430-443.	3.7	99
31	Intratumoral Mediated Immunosuppression is Prognostic in Genetically Engineered Murine Models of Glioma and Correlates to Immunotherapeutic Responses. Clinical Cancer Research, 2010, 16, 5722-5733.	7.0	71
32	Glioblastoma Cancer-Initiating Cells Inhibit T-Cell Proliferation and Effector Responses by the Signal Transducers and Activators of Transcription 3 Pathway. Molecular Cancer Therapeutics, 2010, 9, 67-78.	4.1	253
33	Degrasyn Potentiates the Antitumor Effects of Bortezomib in Mantle Cell Lymphoma Cells <i>In vitro</i> and <i>In vivo</i> : Therapeutic Implications. Molecular Cancer Therapeutics, 2010, 9, 2026-2036.	4.1	51
34	Inhibition of p-STAT3 Enhances IFN- \hat{l}_{\pm} Efficacy against Metastatic Melanoma in a Murine Model. Clinical Cancer Research, 2010, 16, 2550-2561.	7.0	51
35	Glycomic and Transcriptomic Response of GSC11 Glioblastoma Stem Cells to STAT3 Phosphorylation Inhibition and Serum-Induced Differentiation. Journal of Proteome Research, 2010, 9, 2098-2108.	3.7	34
36	Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology, 2010, 12, 1113-1125.	1.2	530

#	Article	IF	CITATIONS
37	d-Glucose- and d-mannose-based antimetabolites. Part 2. Facile synthesis of 2-deoxy-2-halo-d-glucoses and -d-mannoses. Carbohydrate Research, 2009, 344, 1464-1473.	2.3	21
38	A novel phosphorylated STAT3 inhibitor enhances T cell cytotoxicity against melanoma through inhibition of regulatory T cells. Cancer Immunology, Immunotherapy, 2009, 58, 1023-1032.	4.2	74
39	Activation of Signal Transducers and Activators of Transcription 3 and Focal Adhesion Kinase by Stromal Cell-Derived Factor 1 Is Required for Migration of Human Mesenchymal Stem Cells in Response to Tumor Cell-Conditioned Medium. Stem Cells, 2009, 27, 857-865.	3.2	182
40	Therapeutic suppression of constitutive and inducible JAKSTAT activation in head and neck squamous cell carcinoma. Journal of Experimental Therapeutics and Oncology, 2009, 8, 117-27.	0.5	25
41	DFT Study on the Selectivity of Complexation of Metal Cations with a Dioxadithia Crown Ether Ligand. Journal of Physical Chemistry A, 2008, 112, 13633-13640.	2.5	14
42	Glycal Derivatives. , 2008, , 699-735.		7
43	Complexation of Metal lons in Langmuir Films Formed with Two Amphiphilic Dioxadithia Crown Ethers. Journal of Physical Chemistry B, 2008, 112, 10953-10963.	2.6	8
44	Structure and dynamics of methyl cis-3,4-diamino-2,3,4,6-tetradeoxy- \hat{l} ±-l-lyxo-hexopyranoside complexes with PtCl2 and PdCl2, by 1H, 2H, 13C, 15N and 195Pt NMR spectroscopy in DMSO, CD3CN and H2O. Dalton Transactions, 2008, , 4129.	3.3	5
45	The Inhibitory Effect of 2-Halo Derivatives of d-Glucose on Glycolysis and on the Proliferation of the Human Malaria Parasite Plasmodium falciparum. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 511-517.	2.5	45
46	WP1066, a Novel JAK2 Inhibitor, Suppresses Proliferation and Induces Apoptosis in Erythroid Human Cells Carrying the JAK2 V617F Mutation. Clinical Cancer Research, 2008, 14, 788-796.	7.0	76
47	The Incidence, Correlation with Tumor-Infiltrating Inflammation, and Prognosis of Phosphorylated STAT3 Expression in Human Gliomas. Clinical Cancer Research, 2008, 14, 8228-8235.	7.0	174
48	A Novel Inhibitor of Signal Transducers And Activators Of Transcription 3 Activation Is Efficacious Against Established Central Nervous System Melanoma and Inhibits Regulatory T Cells. Clinical Cancer Research, 2008, 14, 5759-5768.	7.0	111
49	Small Molecular Inhibitors of p-STAT3: Novel Agents for Treatment of Primary and Metastatic CNS Cancers. Recent Patents on CNS Drug Discovery, 2008, 3, 179-188.	0.9	23
50	A Novel Small Molecule Inhibitor of Signal Transducers and Activators of Transcription 3 Reverses Immune Tolerance in Malignant Glioma Patients. Cancer Research, 2007, 67, 9630-9636.	0.9	278
51	WP1066 Disrupts Janus Kinase-2 and Induces Caspase-Dependent Apoptosis in Acute Myelogenous Leukemia Cells. Cancer Research, 2007, 67, 11291-11299.	0.9	127
52	In Vitro Evaluation of Photosensitivity Risk Related to Genetic Polymorphisms of Human ABC Transporter ABCG2 and Inhibition by Drugs. Drug Metabolism and Pharmacokinetics, 2007, 22, 428-440.	2.2	66
53	Activation of a novel Bcr/Abl destruction pathway by WP1130 induces apoptosis of chronic myelogenous leukemia cells. Blood, 2007, 109, 3470-3478.	1.4	82
54	Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochemical Pharmacology, 2007, 73, 620-631.	4.4	118

#	Article	IF	CITATIONS
55	Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells. Biochemical Pharmacology, 2007, 73, 934-942.	4.4	20
56	WP760, a melanoma selective drug. Cancer Chemotherapy and Pharmacology, 2007, 60, 625-633.	2.3	5
57	Effect of structural modification at the 4, $3\hat{a}\in^2$, and $2\hat{a}\in^2$ positions of doxorubicin on topoisomerase II poisoning, apoptosis, and cytotoxicity in human melanoma cells. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 193-198.	2.3	15
58	A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Investigational New Drugs, 2007, 25, 313-326.	2.6	89
59	Mitotic Catastrophe Results in Cell Death by Caspase-Dependentand Caspase-Independent Mechanisms. Cell Cycle, 2006, 5, 53-60.	2.6	123
60	The 4′-O-benzylated doxorubicin analog WP744 overcomes resistance mediated by P-glycoprotein, multidrug resistance protein and breast cancer resistance protein in cell lines and acute myeloid leukemia cells. Investigational New Drugs, 2006, 25, 115-122.	2.6	13
61	Efficacy of 2-halogen substituted d-glucose analogs in blocking glycolysis and killing "hypoxic tumor cells― Cancer Chemotherapy and Pharmacology, 2006, 58, 725-734.	2.3	67
62	Transcriptional changes facilitate mitotic catastrophe in tumour cells that contain functional p53. European Journal of Pharmacology, 2006, 540, 34-45.	3.5	18
63	Topoisomerase II alpha expression and cytotoxicity of anthracyclines in human neoplastic cells. Acta Poloniae Pharmaceutica, 2006, 63, 15-8.	0.1	5
64	Differential Sensitivity to 2-Deoxy-D-glucose Between Two Pancreatic Cell Lines Correlates With GLUT-1 Expression. Pancreas, 2005, 30, e34-e39.	1.1	40
65	A New Bisintercalating Anthracycline with Picomolar DNA Binding Affinity. Journal of Medicinal Chemistry, 2005, 48, 8209-8219.	6.4	53
66	A Bisanthracycline (WP631) Represses uPAR Gene Expression and Cell Migration of RKO Colon Cancer Cells by Interfering With Transcription Factor Binding to a Chromatin-Accessible â^148/â^124 Promoter Region. Oncology Research, 2005, 15, 265-279.	1.5	13
67	Antitumor Activity and Mechanism of Action of a Novel Stat3 Inhibitor, WP1066, Against Human B-Cell Non-Hodgkin's Lymphoma and Multiple Myeloma Blood, 2005, 106, 1489-1489.	1.4	4
68	Activation of a Novel Proteasomal Independent Bcr/Abl Degradation Pathway by WP1130 Induces Apoptosis in CML Cells Blood, 2005, 106, 2862-2862.	1.4	4
69	WP-1034, a novel JAK-STAT inhibitor, with proapoptotic and antileukemic activity in acute myeloid leukemia (AML). Anticancer Research, 2005, 25, 1841-50.	1.1	19
70	Relationship between topoisomerase II-DNA cleavable complexes, apoptosis and cytotoxic activity of anthracyclines in human cervix carcinoma cells. Anticancer Research, 2005, 25, 2193-8.	1.1	8
71	2-Deoxy-d-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers In Vivo. Cancer Research, 2004, 64, 31-34.	0.9	414
72	The Ability of New Sugar-Modified Derivatives of Antitumor Anthracycline, Daunorubicin, to Stimulate NAD(P)H Oxidation in Different Cellular Oxidoreductase Systems: NADH Dehydrogenase, NADPH Cytochrome P450 Reductase, and Xanthine Oxidase. Oncology Research, 2004, 14, 469-474.	1.5	4

#	Article	IF	CITATIONS
73	Sequence selective binding of bis-daunorubicin WP631 to DNA. FEBS Journal, 2004, 271, 3556-3566.	0.2	11
74	Evidence that activation of nuclear factor-κB is essential for the cytotoxic effects of doxorubicin and its analogues. Biochemical Pharmacology, 2004, 67, 353-364.	4.4	83
75	Simple, semiautomatic assay of cytostatic and cytotoxic effects of antitumor drugs by laser scanning cytometry: Effects of the bis-intercalator WP631 on growth and cell cycle of T-24 cells. Cytometry, 2004, 57A, 113-119.	1.8	14
76	Sp1-Targeted Inhibition of Gene Transcription by WP631 in Transfected Lymphocytesâ€. Biochemistry, 2004, 43, 7584-7592.	2.5	24
77	WP744 is a novel anthracycline with enhanced activity against neuroblastoma 1. Journal of Surgical Research, 2004, 121, 187-196.	1.6	9
78	Targeting BCR-ABL and Its Downstream Signaling Cascade as Therapy for Chronic Myelogenous Leukemia Blood, 2004, 104, 2964-2964.	1.4	1
79	WP-1034, a Novel Jak-Stat Inhibitor, Has Proapoptotic and Antileukemic Activity in Acute Myeloid Leukemia (AML) Cell Lines and AML Patient Samples Blood, 2004, 104, 2528-2528.	1.4	3
80	WP-1066, a Next-Generation Member of JAK-Stat Inhibitors, Induces Cell Cycle Arrest, Abrogates Proliferation, and Induces Apoptosis of Acute Myeloid Leukemia (AML) Cells Blood, 2004, 104, 1169-1169.	1.4	1
81	The effect of new anthracycline derivatives on the induction of apoptotic processes in human neoplastic cells. Folia Histochemica Et Cytobiologica, 2004, 42, 127-30.	1.5	3
82	Enhanced topoisomerase II targeting by annamycin and related 4-demethoxy anthracycline analogues. Molecular Cancer Therapeutics, 2004, 3, 1403-10.	4.1	11
83	New findings in the study on the intercalation of bisdaunorubicin and its monomeric analogues with naked and nucleus DNA. Chemico-Biological Interactions, 2003, 145, 349-358.	4.0	37
84	Structure and biological activity of cationic [PtLCl(DMSO)]NO3·DMSO complex containing a chelated diaminosugar: methyl-3,4-diamino-2,3,4,6-tetradeoxy-α-l-lyxopyranoside. European Journal of Medicinal Chemistry, 2003, 38, 775-780.	5.5	11
85	A comparative analysis of the time-dependent antiproliferative effects of daunorubicin and WP631. FEBS Journal, 2003, 270, 764-770.	0.2	22
86	Differential toxic effect ofcis-platinum(II) and palladium(II) chlorides complexed with methyl 3,4-diamine-2,3,4,6-tetradeoxy-?-L-lyxo-hexopyranoside in mouse lymphoma cell lines differing in DSB and NER repair ability. Teratogenesis, Carcinogenesis, and Mutagenesis, 2003, 23, 1-11.	0.8	15
87	Importance of Sp1 consensus motifs in the MYCN promoter. Surgery, 2002, 132, 232-238.	1.9	17
88	Induction of G2/M arrest and inhibition of c-myc and p53 transcription by WP631 in Jurkat T lymphocytes. Biochemical Pharmacology, 2002, 63, 1251-1258.	4.4	32
89	Preferential efflux by P-glycoprotein, but not MRP1, of compounds containing a free electron donor amine. Biochemical Pharmacology, 2002, 63, 1471-1479.	4.4	17
90	Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochemical Pharmacology, 2002, 64, 1745-1751.	4.4	77

#	Article	IF	CITATIONS
91	P-Glycoprotein preferentially effluxes anthracyclines containing free basic versus charged amine. FEBS Journal, 2001, 268, 1561-1567.	0.2	34
92	Drug sequestration in cytoplasmic organelles does not contribute to the diminished sensitivity of anthracyclines in multidrug resistant K562 cells. FEBS Journal, 2001, 268, 4459-4467.	0.2	14
93	transport of daunorubicin11Abbreviations: P-gp, P-glycoprotein; MRP1, multidrug resistance-associated protein; DNR, daunorubicin; WP900, daunorubicin enantiomer; Ci, intracellular free drug concentration in the cytosol; Ce: extracellular free drug concentration; Cn1, overall concentration of drug accumulated inside the cell (in the nucleus and in the acidic compartment): Cn. overall	4.4	7
94	concentration of drug boun. Biochemical Pharmacology, 2001, 62, 561-567. Exploiting anthracycline scaffold for designing DNA-targeting agents. Methods in Enzymology, 2001, 340, 529-555.	1.0	29
95	Analysis of the Effects of Daunorubicin and WP631 on Transcription. Current Medicinal Chemistry, $2001, 8, 1-8$.	2.4	46
96	Analysis of Drug Transport Kinetics in Multidrug-resistant Cells: Implications for Drug Action. Current Medicinal Chemistry, 2001, 8, 51-64.	2.4	59
97	Formation and Reactions of Glycal Derivatives. , 2001, , 749-783.		8
98	Multidrug resistance protein functionality: no effect of intracellular or extracellular pH changes. Biochemical Pharmacology, 2000, 60, 1485-1489.	4.4	4
99	Ϊθ tumor cells: a model for studying whether mitochondria are targets for rhodamine 123, doxorubicin, and other drugs. Biochemical Pharmacology, 2000, 60, 1897-1905.	4.4	35
100	Correlation between the kinetics of anthracycline uptake and the resistance factor in cancer cells expressing the multidrug resistance protein or the P-glycoprotein. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1450, 374-384.	4.1	42
101	Doxorubicin- and Daunorubicin-Glutathione Conjugates, but Not Unconjugated Drugs, Competitively Inhibit Leukotriene C4Transport Mediated byMRP/GS-XPump. Biochemical and Biophysical Research Communications, 1998, 247, 859-863.	2.1	76
102	Ultratight DNA Binding of a New Bisintercalating Anthracycline Antibiotic. Biochemistry, 1998, 37, 1743-1753.	2.5	109
103	Structure-Based Design of a New Bisintercalating Anthracycline Antibiotic. Journal of Medicinal Chemistry, 1997, 40, 261-266.	6.4	150
104	Binding of Two Novel Bisdaunorubicins to DNA Studied by NMR Spectroscopyâ€,‡. Biochemistry, 1997, 36, 8663-8670.	2.5	66
105	Structure of a DNAâ^'Bisdaunomycin Complexâ€,‡. Biochemistry, 1997, 36, 5940-5946.	2.5	60
106	Interaction of doxorubicin and its derivatives with DNA: Elucidation by resonance Raman and surface-enhanced resonance Raman spectroscopy. Biospectroscopy, 1997, 3, 307-316.	0.6	39
107	Annamycin circumvents resistance mediated by the multidrug resistance-associated protein (MRP) in breast MCF-7 and small-cell lung UMCC-1 cancer cell lines selected for resistance to etoposide. International Journal of Cancer, 1997, 71, 35-41.	5.1	18
108	Parsing the Free Energy of Anthracycline Antibiotic Binding to DNAâ€. Biochemistry, 1996, 35, 2047-2053.	2.5	187

#	Article	IF	CITATIONS
109	Base Specific and Regioselective Chemical Cross-Linking of Daunorubicin to DNA. Journal of the American Chemical Society, 1996, 118, 4731-4738.	13.7	55
110	Comparison of DNA sequence selectivity of anthracycline antibiotics and their 3′-hydroxylated analogs. Chemico-Biological Interactions, 1996, 100, 165-176.	4.0	10
111	Lyophilized preliposomal formulation of the non-cross-resistant anthracycline annamycin: effect of surfactant on liposome formation, stability and size. Cancer Chemotherapy and Pharmacology, 1996, 39, 103-108.	2.3	17
112	The Overall Partitioning of Anthracyclines into Phosphatidyl-Containing Model Membranes Depends Neither on the Drug Charge Nor the Presence of Anionic Phospholipids. FEBS Journal, 1996, 241, 879-887.	0.2	72
113	Substitutions at C2' of Daunosamine in the Anticancer Drug Daunorubicin Alter Its DNA-Binding Sequence Specificity. FEBS Journal, 1996, 240, 331-335.	0.2	9
114	Partial circumvention of multi-drug resistance by annamycin is associated with comparable inhibition of DNA synthesis in the nuclear matrix of sensitive and resistant cells. International Journal of Cancer, 1995, 61, 402-408.	5.1	6
115	Effect of vesicle size and lipid composition on thein vivo tumor selectivity and toxicity of the non-cross-resistant anthracycline annamycin incorporated in liposomes. International Journal of Cancer, 1995, 61, 666-671.	5.1	39
116	Hydroxylation at C-3′ of doxorubicin alters the selected phenotype of cellular drug resistance. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1807-1812.	2.2	15
117	How Does the MRP/GS-X Pump Export Doxorubicin?. Journal of the National Cancer Institute, 1995, 87, 1639-1640.	6.3	31
118	The Use of Liposomes as Carriers of Lipophilic Anthracycline Antibiotics. Journal of Liposome Research, 1994, 4, 555-573.	3.3	0
119	Hydroxyrubicin, a deaminated derivative of doxorubicin, inhibits mammalian DNA topoisomerase II and partially circumvents multidrug resistance. International Journal of Cancer, 1994, 58, 85-94.	5.1	15
120	Cellular pharmacology of the partially non-cross-resistant anthracycline annamycin entrapped in liposomes in KB and KB-V1 cells. Cancer Chemotherapy and Pharmacology, 1994, 34, 109-118.	2.3	15
121	P-glycoprotein-mediated efflux of hydroxyrubicin, a neutral anthracycline derivative, in resistant K562 cells. FEBS Letters, 1994, 356, 287-290.	2.8	23
122	Non-Cross-Resistant Anthracyclines with Reduced Basicity and Increased Stability of the Glycosidic Bond. ACS Symposium Series, 1994, , 14-46.	0.5	2
123	Quantitative Analysis of the Lipophilic Doxorubicin Analogue Annamycin in Plasma and Tissue Samples by Reversed-Phase Chromatography. Journal of Pharmaceutical Sciences, 1993, 82, 1151-1154.	3.3	5
124	Organ distribution and tumor uptake of annamycin, a new anthracycline derivative with high affinity for lipid membranes, entrapped in multilamellar vesicles. Cancer Chemotherapy and Pharmacology, 1993, 32, 190-196.	2.3	18
125	Design and tumor targeting of anthracyclines able to overcome multidrug resistance: A double-advantage approach., 1993, 60, 215-234.		51
126	Synthesis of 3-deoxyaldulosonic acid esters by one-carbon chain extension of glycal-derived lactone precursors. Carbohydrate Research, 1993, 246, 105-118.	2.3	5

#	Article	IF	CITATIONS
127	Steric and conformational effects in the dehalogenation of 2-halo sugar derivatives with tributylstannane. Journal of Organic Chemistry, 1993, 58, 1821-1826.	3.2	18
128	Synthesis and antitumor activity of anthracycline disaccharide glycosides containing daunosamine Journal of Antibiotics, 1993, 46, 1720-1730.	2.0	10
129	Removal of the basic center from doxorubicin partially overcomes multidrug resistance and decreases cardiotoxicity. Anti-Cancer Drugs, 1993, 4, 37-48.	1.4	66
130	3'-Hydroxyesorubicin halogenated at C-2' Journal of Antibiotics, 1992, 45, 386-393.	2.0	5
131	Liposomal formulation and antitumor activity of 14-O-palmitoyl-hydroxyrubicin. Cancer Chemotherapy and Pharmacology, 1992, 30, 267-271.	2.3	10
132	One step C-acylation of glycals and 2-deoxy-hexopyranoses at C-2. Tetrahedron Letters, 1992, 33, 7681-7684.	1.4	9
133	2-Deoxy-1-O-silylated-β-hexopyranoses. Useful glycosyl donors and synthetic intermediates Tetrahedron Letters, 1991, 32, 2079-2082.	1.4	21
134	A facile method for preparation of 3-thio-sugars and 3-thio-glycals. synthesis of 3′-mercapto-3′-deamino-doxorubicin. Tetrahedron Letters, 1991, 32, 3313-3316.	1.4	16
135	Synthesis of new 1-C-(2-furyl)-and 3-C-(2-furyl)-hexopyranosides and 3-C-(2-furyl)-daunorubicin analogs. Monatshefte Fýr Chemie, 1991, 122, 419-423.	1.8	4
136	3'-Hydroxyesorubicin. Synthesis and antitumor activity Journal of Antibiotics, 1990, 43, 838-846.	2.0	7
137	Iodoalkoxylation of 1,5-anhydro-2-deoxy-hex-1-enitols (glycals). Carbohydrate Research, 1990, 205, 71-86.	2.3	59
138	Preparation of 4-O-acetyl-1,5-anhydro-2,3,6-trideoxy-3-trifluoroacetamido-l- lyxo-hex-1-enitol, a key intermediate in synthesis of daunosamine glycosides. Carbohydrate Research, 1989, 187, 145-148.	2.3	7
139	A new approach to 2-deoxyglycosides permitting access to anthracycline glycosides specifically labeled at the 2′-position. Carbohydrate Research, 1989, 187, 149-153.	2.3	9
140	Preparative procedures for conversion of daunorubicin into doxorubicin (Adriamycin) and 14-O-acetyldoxorubicin by way of 14-bromodaunorubicin. Carbohydrate Research, 1988, 184, 231-235.	2.3	4
141	Halogenation of 1,5-anhydrohex-1-enitols (glycals). Influence of the C-6 substituent. Journal of Organic Chemistry, 1986, 51, 3479-3485.	3.2	29
142	Synthesis and antitumor activity of 2′-bromo- and 2′-chloro-3′-acetoxy-3′-deaminodaunorubicin analog Carbohydrate Research, 1985, 144, 305-315.	gs _{2.3}	20
143	Selective acylation of 6-deoxyglycals. Carbohydrate Research, 1985, 144, 317-324.	2.3	22
144	Selective silylation of 6-deoxyglycals. Carbohydrate Research, 1985, 144, 325-330.	2.3	23

#	Article	IF	CITATIONS
145	Allylic rearrangement of 6-deoxyglycals having practical utility. Carbohydrate Research, 1985, 144, 331-337.	2.3	53
146	Oxyhalogenation of glycals for the synthesis of anti-tumor-active 2′-halo daunorubicin analogs. Carbohydrate Research, 1985, 136, 391-396.	2.3	23
147	Synthesis of antitumor-active (7S,9S)-4-demethoxy-7-O-(2,6-dideoxy-2-iodo-α-l-mannopyranosyl)adriamycinone: Preparative resolution of a racemic anthracyclinone by alkoxyhalogenation of a glycal. Carbohydrate Research, 1984, 130, C1-C3.	2.3	20
148	3'-Deamino-4'-epi-3'-hydroxy-daunorubicin and -doxorubicin. Synthesis and antitumor activity Journal of Antibiotics, 1984, 37, 1635-1641.	2.0	18
149	Synthesis and antitumor activity of 3'-deamino-3'-hydroxydoxorubicin. A facile procedure for the preparation of doxorubicin analogs Journal of Antibiotics, 1984, 37, 853-858.	2.0	28
150	14-Esters of 7-O-(3,4-di-O-acetyl-2,6-dideoxyALPHAL-lyxo-hexopyranosyl)adriamycinone: synthesis and antitumor activity Journal of Antibiotics, 1983, 36, 1211-1215.	2.0	6
151	New adriamycin analogs. Synthesis and antitumor activity of 14-substituted 7-O-(3,4-di-O-acetyl-2,6-dideoxyALPHAl-lyxo-hexopyranosyl)daunomycinones Journal of Antibiotics, 1981, 34, 1019-1025.	2.0	8
152	Synthesis and antitumor activity of 7-O-(3,4-di-O-acetyl-2,6-dideoxy-α-l-lyxo-hexopyranosyl)adriamycinone. Carbohydrate Research, 1981, 94, 11-25.	2.3	26
153	Synthetic routes to higher-carbon sugars. Reaction of lactones with 2-lithio-,3-dithiane. Carbohydrate Research, 1981, 94, 27-41.	2.3	43
154	The acid-catalysed reaction of thiols with alkyl 2,3-dideoxy-glyc-2-enopyranosides or glycals. Tetrahedron, 1980, 36, 287-297.	1.9	63
155	Synthesis of alkyl 4,6-di-o-acetyl-2,3-dideoxy-î±-d-threo-hex-2- enopyranosides from 3,4,6-tri-o-acetyl-1,5-anhydro-2-deoxy- d-lyxo-hex-1-enitol (3,4,6-tri-o-acetyl-d-galactal). Carbohydrate Research, 1979, 68, 33-41.	2.3	85
156	Maximizing Local Access to Therapeutic Deliveries in Glioblastoma. Part I: Targeted Cytotoxic Therapy. , 0, , 341-358.		8