Alan T Collins, A T Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10431414/publications.pdf

Version: 2024-02-01

34 papers 1,761 citations

331670 21 h-index 31 g-index

34 all docs

34 docs citations

times ranked

34

1029 citing authors

#	Article	IF	CITATIONS
1	Diamond Spectroscopy, Defect Centers, Color, and Treatments. Reviews in Mineralogy and Geochemistry, 2022, 88, 637-688.	4.8	17
2	The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough. Gems & Gemology, 2010, 46, 80-89.	0.6	11
3	Luminescence-lifetime mapping in diamond. Journal of Physics Condensed Matter, 2009, 21, 364210.	1.8	25
4	The annealing of radiation damage in type Ia diamond. Journal of Physics Condensed Matter, 2009, 21, 364209.	1.8	31
5	Detectors for UV and Far UV Radiation. , 2009, , 163-183.		4
6	High-temperature annealing of optical centers in type-I diamond. Journal of Applied Physics, 2005, 97, 083517.	2.5	72
7	The production of vacancies in type Ib diamond. Journal of Physics Condensed Matter, 2003, 15, L591-L596.	1.8	14
8	The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diamond and Related Materials, 2003, 12, 1976-1983.	3.9	44
9	Absorption spectra of hydrogen in13C diamond produced by high-pressure, high-temperature synthesis. Journal of Physics Condensed Matter, 2003, 15, 3163-3170.	1.8	28
10	The Fermi level in diamond. Journal of Physics Condensed Matter, 2002, 14, 3743-3750.	1.8	109
11	Misidentification of nitrogenÂvacancy absorption in diamond. Journal of Physics Condensed Matter, 2002, 14, L467-L471.	1.8	11
12	The colour of diamond and how it may be changed. Journal of Gemmology, 2001, 27, 341-359.	0.2	52
13	Improving the colour ofgem-quality diamonds by high-pressure, high-temperature annealing. Materials Today, 2000, 3, 3-6.	14.2	1
14	Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diamond and Related Materials, 2000, 9, 113-122.	3.9	142
15	Experimental and theoretical studies of cobalt defects in diamond. Diamond and Related Materials, 2000, 9, 424-427.	3.9	15
16	Transition metals in diamond: experimental and theoretical identification of Co–N complexes. Physica B: Condensed Matter, 1999, 273-274, 647-650.	2.7	10
17	Comparison of diamond and silicon ultraviolet photodetectors. Diamond and Related Materials, 1999, 8, 1753-1758.	3.9	15
18	Things we still don't know about optical centres in diamond. Diamond and Related Materials, 1999, 8, 1455-1462.	3.9	44

#	Article	IF	CITATIONS
19	Correlation between optical absorption and EPR in high-pressure diamond grown from a nickel solvent catalyst. Diamond and Related Materials, 1998, 7, 333-338.	3.9	57
20	The annealing of interstitial-related optical centres in type II natural and CVD diamond. Diamond and Related Materials, 1998, 7, 228-232.	3.9	99
21	Diamond Electronic Devices—The End of a Dream?. Israel Journal of Chemistry, 1998, 38, 121-133.	2.3	3
22	Spectroscopic study of cobalt-related optical centers in synthetic diamond. Journal of Applied Physics, 1996, 79, 4348.	2.5	93
23	The electrical and optical properties of thin film diamond. Ceramics International, 1996, 22, 321-327.	4.8	9
24	Isotope Dependence of the Frequency of Localized Vibrational Modes in Diamond. Materials Science Forum, 1994, 143-147, 29-34.	0.3	26
25	Electronic era elusive. Nature, 1994, 370, 601-601.	27.8	21
26	The annealing of radiation damage in De Beers colourless CVD diamond. Diamond and Related Materials, 1994, 3, 932-935.	3.9	52
27	The optical and electronic properties of semiconducting diamond. , 1994, , 63-74.		3
28	Intrinsic and extrinsic absorption and luminescence in diamond. Physica B: Condensed Matter, 1993, 185, 284-296.	2.7	62
29	Intrinsic and extrinsic absorption and luminescence in diamond. , 1993, , 284-296.		0
30	The characterisation of point defects in diamond by luminescence spectroscopy. Diamond and Related Materials, 1992, 1, 457-469.	3.9	209
31	Vacancy-related centers in diamond. Physical Review B, 1992, 46, 13157-13170.	3.2	345
32	Diamond electronic devicesâ€"can they outperform silicon or GaAs?. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 11, 257-263.	3. 5	31
33	The Electronic and Optical Properties of Diamond; Do they Favour Device Applications?. Materials Research Society Symposia Proceedings, 1989, 162, 3.	0.1	39
34	Sharp infra-red absorption lines in diamond Solid State Communications, 1984, 49, 433-436.	1.9	67