Camaron R Hole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10431353/publications.pdf

Version: 2024-02-01

759233 888059 17 698 12 17 h-index citations g-index papers 19 19 19 916 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Induction of memory-like dendritic cell responses in vivo. Nature Communications, 2019, 10, 2955.	12.8	113
2	Protective Immunity against Pulmonary Cryptococcosis Is Associated with STAT1-Mediated Classical Macrophage Activation. Journal of Immunology, 2012, 189, 4060-4068.	0.8	86
3	STAT1 Signaling within Macrophages Is Required for Antifungal Activity against Cryptococcus neoformans. Infection and Immunity, 2015, 83, 4513-4527.	2.2	80
4	Cryptococcus and Phagocytes: Complex Interactions that Influence Disease Outcome. Frontiers in Microbiology, 2016, 7, 105.	3.5	75
5	STAT1 Signaling Is Essential for Protection against <i>Cryptococcus neoformans</i> Journal of Immunology, 2014, 193, 4060-4071.	0.8	66
6	IFN- \hat{I}^3 immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans. PLoS Pathogens, 2018, 14, e1007358.	4.7	49
7	Antifungal Activity of Plasmacytoid Dendritic Cells against Cryptococcus neoformans <i>In Vitro</i> Requires Expression of Dectin-3 (CLEC4D) and Reactive Oxygen Species. Infection and Immunity, 2016, 84, 2493-2504.	2.2	43
8	Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus. Scientific Reports, 2012, 2, 739.	3.3	39
9	Vaccine-Mediated Immune Responses to Experimental Pulmonary Cryptococcus gattii Infection in Mice. PLoS ONE, 2014, 9, e104316.	2.5	37
10	Vaccine and Immunotherapeutic Approaches for the Prevention of Cryptococcosis: Lessons Learned from Animal Models. Frontiers in Microbiology, 2012, 3, 291.	3.5	30
11	Chitosan Biosynthesis and Virulence in the Human Fungal Pathogen Cryptococcus gattii. MSphere, 2019, 4, .	2.9	23
12	Cryptococcus neoformans Chitin Synthase 3 Plays a Critical Role in Dampening Host Inflammatory Responses. MBio, 2020, 11, .	4.1	17
13	Induction of Broad-Spectrum Protective Immunity against Disparate Cryptococcus Serotypes. Frontiers in Immunology, 2017, 8, 1359.	4.8	16
14	Cryptococcus neoformans Cda1 and Cda2 coordinate deacetylation of chitin during infection to control fungal virulence. Cell Surface, 2021, 7, 100066.	3.0	10
15	Cryptococcus neoformans Evades Pulmonary Immunity by Modulating Xylose Precursor Transport. Infection and Immunity, 2020, 88, .	2.2	7
16	An Automated Assay to Measure Phagocytosis of <i>Cryptococcus neoformans</i> Protocols in Microbiology, 2019, 53, e79.	6.5	4
17	RNA Interference Screening Reveals Host CaMK4 as a Regulator of Cryptococcal Uptake and Pathogenesis. Infection and Immunity, 2017, 85, .	2.2	3