Ralf Bender

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042822/publications.pdf

Version: 2024-02-01

23567 19749 14,879 122 58 117 citations h-index g-index papers 122 122 122 6322 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Slope of the Black Hole Mass versus Velocity Dispersion Correlation. Astrophysical Journal, 2002, 574, 740-753.	4.5	2,149
2	The Epochs of Earlyâ€Type Galaxy Formation as a Function of Environment. Astrophysical Journal, 2005, 621, 673-694.	4.5	1,263
3	STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES. Astrophysical Journal, Supplement Series, 2009, 182, 216-309.	7.7	757
4	Dynamically hot galaxies. I - Structural properties. Astrophysical Journal, 1992, 399, 462.	4.5	664
5	Stellar population models of Lick indices with variable element abundance ratios. Monthly Notices of the Royal Astronomical Society, 2003, 339, 897-911.	4.4	663
6	Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies. Astronomical Journal, 2001, 121, 1936-1951.	4.7	414
7	THE KMOS ^{3D} SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ⩽ <i>z</i> ⩽2.7. Astrophysical Journal, 2015, 799, 209.	4.5	406
8	Axisymmetric Dynamical Models of the Central Regions of Galaxies. Astrophysical Journal, 2003, 583, 92-115.	4.5	324
9	Line-of-sight velocity distributions of elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 1994, 269, 785-813.	4.4	313
10	A REVISED PARALLEL-SEQUENCE MORPHOLOGICAL CLASSIFICATION OF GALAXIES: STRUCTURE AND FORMATION OF SO AND SPHEROIDAL GALAXIES. Astrophysical Journal, Supplement Series, 2012, 198, 2.	7.7	287
11	Dynamically hot galaxies. II - Global stellar populations. Astrophysical Journal, 1993, 411, 153.	4.5	274
12	A Proposed Revision of the Hubble Sequence for Elliptical Galaxies. Astrophysical Journal, 1996, 464, L119-L122.	4.5	249
13	BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING,. Astrophysical Journal, 2010, 723, 54-80.	4.5	237
14	Extremely compact massive galaxies at z \hat{A} 1.4. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 373, L36-L40.	3.3	214
15	Spatially resolved spectroscopy of Coma cluster early-type galaxies. Astronomy and Astrophysics, 2003, 407, 423-435.	5.1	214
16	Axisymmetric, Three-Integral Models of Galaxies: A Massive Black Hole in NGC 3379. Astronomical Journal, 2000, 119, 1157-1171.	4.7	210
17	The Stellar Mass Function of Galaxies to z  ~ 5 in the FORS Deep and GOODS-South Fields. Astrophysical Journal, 2005, 619, L131-L134.	4.5	201
18	THE SINFONI BLACK HOLE SURVEY: THE BLACK HOLE FUNDAMENTAL PLANE REVISITED AND THE PATHS OF (CO)EVOLUTION OF SUPERMASSIVE BLACK HOLES AND BULGES. Astrophysical Journal, 2016, 818, 47.	4.5	197

#	Article	IF	Citations
19	The Centers of Earlyâ€Type Galaxies with (i> Hubble Space Telescope (/i>. VI. Bimodal Central Surface Brightness Profiles. Astrophysical Journal, 2007, 664, 226-256.	4.5	195
20	EVIDENCE FOR WIDE-SPREAD ACTIVE GALACTIC NUCLEUS-DRIVEN OUTFLOWS IN THE MOST MASSIVE <i>>z < /i> 2 STAR-FORMING GALAXIES. Astrophysical Journal, 2014, 796, 7.</i>	^1/ ₄ 4.5	184
21	Orbital structure and mass distribution in elliptical galaxies. Astronomy and Astrophysics, 2000, 144, 53-84.	2.1	184
22	Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature, 2017, 543, 397-401.	27.8	177
23	Constraints on galaxy formation from Â-enhancement in luminous elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 1999, 302, 537-548.	4.4	171
24	Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass function and the distribution of dark matter. Monthly Notices of the Royal Astronomical Society, 2011, 415, 545-562.	4.4	155
25	Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 382, 657-684.	4.4	150
26	The <i>XMM</i> ― <i>Newton</i> Wideâ€Field Survey in the COSMOS Field. III. Optical Identification and Multiwavelength Properties of a Large Sample of Xâ€Ray–Selected Sources. Astrophysical Journal, Supplement Series, 2007, 172, 353-367.	7.7	147
27	The evolution of the luminosity functions in the FORS Deep Field from low to high redshift. Astronomy and Astrophysics, 2004, 421, 41-58.	5.1	137
28	THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES. Astrophysical Journal, Supplement Series, 2011, 192, 5.	7.7	134
29	The Kormendy relation of massive elliptical galaxies at $z\hat{A}$ 1.5: evidence for size evolution. Monthly Notices of the Royal Astronomical Society, 2007, 374, 614-626.	4.4	132
30	Specific Star Formation Rates to Redshift 5 from the FORS Deep Field and the GOODS-S Field. Astrophysical Journal, 2005, 633, L9-L12.	4.5	131
31	CORRELATIONS BETWEEN SUPERMASSIVE BLACK HOLES, VELOCITY DISPERSIONS, AND MASS DEFICITS IN ELLIPTICAL GALAXIES WITH CORES. Astrophysical Journal, 2009, 691, L142-L146.	4.5	121
32	CANDELS/GOODS-S, CDFS, AND ECDFS: PHOTOMETRIC REDSHIFTS FOR NORMAL AND X-RAY-DETECTED GALAXIES. Astrophysical Journal, 2014, 796, 60.	4.5	117
33	THE EVOLUTION OF METALLICITY AND METALLICITY GRADIENTS FROM $z=2.7\text{TO}~0.6\text{WITH}$ KMOS ^{3D} . Astrophysical Journal, 2016, 827, 74.	4.5	109
34	New clues on the calcium underabundance in early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2003, 343, 279-283.	4.4	108
35	Mapping stationary axisymmetric phase-space distribution functions by orbit libraries. Monthly Notices of the Royal Astronomical Society, 2004, 353, 391-404.	4.4	108
36	DWARF GALAXY DARK MATTER DENSITY PROFILES INFERRED FROM STELLAR AND GAS KINEMATICS. Astrophysical Journal, 2014, 789, 63.	4.5	108

#	Article	IF	CITATIONS
37	THE ANGULAR MOMENTUM DISTRIBUTION AND BARYON CONTENT OF STAR-FORMING GALAXIES AT zÂâ^1⁄4Â1â€' Astrophysical Journal, 2016, 826, 214.	"3* 4.5	107
38	A CONSISTENT STUDY OF METALLICITY EVOLUTION AT 0.8 < $\langle i \rangle z \langle j \rangle$ < 2.6. Astrophysical Journal Letters, 2014, 789, L40.	8.3	96
39	Exploring Cluster Elliptical Galaxies as Cosmological Standard Rods. Astrophysical Journal, 1998, 493, 529-535.	4.5	94
40	The fundamental plane of EDisCS galaxies. Astronomy and Astrophysics, 2010, 524, A6.	5.1	90
41	Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at zÂâ^⅓Â1–2. Astrophysical Journal, 2017, 835, 153.	4.5	88
42	The Evolution and Origin of Ionized Gas Velocity Dispersion from $z\hat{A}\hat{a}^1/4\hat{A}2.6$ to $z\hat{A}\hat{a}^1/4\hat{A}0.6$ with KMOS ^{3D} ^{\hat{a}-} . Astrophysical Journal, 2019, 880, 48.	4.5	84
43	KMOS3D: DYNAMICAL CONSTRAINTS ON THE MASS BUDGET IN EARLY STAR-FORMING DISKS*. Astrophysical Journal, 2016, 831, 149.	4.5	83
44	Cluster galaxies in XMMU J2235-2557: galaxy population properties in most massive environments at <i>z</i> 倉–Â 1.4. Astronomy and Astrophysics, 2010, 524, A17.	5.1	81
45	The old and heavy bulge of M 31. Astronomy and Astrophysics, 2010, 509, A61.	5.1	80
46	THE INFLUENCE OF DARK MATTER HALOS ON DYNAMICAL ESTIMATES OF BLACK HOLE MASS: 10 NEW MEASUREMENTS FOR HIGH-Ïf EARLY-TYPE GALAXIES. Astronomical Journal, 2013, 146, 45.	4.7	79
47	The KMOS ^{3D} Survey: Data Release and Final Survey Paper*. Astrophysical Journal, 2019, 886, 124.	4.5	79
48	A QUINTET OF BLACK HOLE MASS DETERMINATIONS. Astrophysical Journal, 2009, 695, 1577-1590.	4.5	76
49	The Evolution of the Tully–Fisher Relation between z â^¼ 2.3 and z â^¼ 0.9 with KMOS ^{3D} ^{â^—} . Astrophysical Journal, 2017, 842, 121.	4.5	73
50	X-ray monitoring of optical novae in M 31 from July 2004 to February 2005. Astronomy and Astrophysics, 2007, 465, 375-392.	5.1	68
51	THE DYNAMICAL FINGERPRINT OF CORE SCOURING IN MASSIVE ELLIPTICAL GALAXIES. Astrophysical Journal, 2014, 782, 39.	4.5	67
52	KINEMATIC SIGNATURES OF BULGES CORRELATE WITH BULGE MORPHOLOGIES AND SÉRSIC INDEX. Astrophysical Journal, 2012, 754, 67.	4.5	65
53	Falling Outer Rotation Curves of Star-forming Galaxies at 0.6Â≲ÂzÂ≲Â2.6 Probed with KMOS ^{3D<td>^p} 4.5</td><td>64</td>}	^p } 4.5	64
54	The supermassive black hole of Fornax A ^{â~} . Monthly Notices of the Royal Astronomical Society, 2008, 391, 1629-1649.	4.4	62

#	Article	IF	CITATIONS
55	A STELLAR DYNAMICAL MEASUREMENT OF THE BLACK HOLE MASS IN THE MASER GALAXY NGC 4258. Astrophysical Journal, 2009, 693, 946-969.	4.5	62
56	A 40 Billion Solar-mass Black Hole in the Extreme Core of Holm 15A, the Central Galaxy of Abell 85. Astrophysical Journal, 2019, 887, 195.	4.5	61
57	DEPLETED GALAXY CORES AND DYNAMICAL BLACK HOLE MASSES. Astronomical Journal, 2013, 146, 160.	4.7	60
58	The Epochs of Early-Type Galaxy Formation. Astrophysics and Space Science, 2002, 281, 371-374.	1.4	58
59	The FORS Deep Field spectroscopic survey. Astronomy and Astrophysics, 2004, 418, 885-906.	5.1	58
60	STRUCTURE AND FORMATION OF cD GALAXIES: NGC 6166 IN ABELL 2199. Astrophysical Journal, 2015, 807, 56.	4.5	57
61	CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS. Astrophysical Journal Letters, 2014, 787, L26.	8.3	55
62	Rotation Curves in z â^¼ 1–2 Star-forming Disks: Evidence for Cored Dark Matter Distributions. Astrophysical Journal, 2020, 902, 98.	4.5	55
63	The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections*. Astrophysical Journal, 2021, 923, 217.	4.5	55
64	The evolution of the luminosity functions in the FORS deep field from low to high redshift. Astronomy and Astrophysics, 2006, 448, 101-121.	5.1	54
65	The Regulation of Galaxy Growth along the Size–Mass Relation by Star Formation, as Traced by Hα in KMOS ^{3D} Galaxies at 0.7Ä≲ÂzÂ≲Â2.7*. Astrophysical Journal, 2020, 892, 1.	4.5	54
66	The HETDEX Instrumentation: Hobby–Eberly Telescope Wide-field Upgrade and VIRUS. Astronomical Journal, 2021, 162, 298.	4.7	52
67	The Wendelstein Calar Alto Pixellensing Project (WeCAPP): First MACHO Candidates. Astrophysical Journal, 2003, 599, L17-L20.	4.5	49
68	Structure of Brightest Cluster Galaxies and Intracluster Light. Astrophysical Journal, Supplement Series, 2020, 247, 43.	7.7	48
69	RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300. Astrophysical Journal, 2015, 805, 182.	4.5	47
70	FURTHER EVIDENCE FOR LARGE CENTRAL MASS-TO-LIGHT RATIOS IN EARLY-TYPE GALAXIES: THE CASE OF ELLIPTICALS AND LENTICULARS IN THE A262 CLUSTER. Astronomical Journal, 2012, 144, 78.	4.7	46
71	The flattening and the orbital structure of early-type galaxies and collisionless <i>N</i> body binary disc mergers. Monthly Notices of the Royal Astronomical Society, 2009, 393, 641-652.	4.4	45
72	KMOS ^{3D} Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7Â<ÂzÂ<Â2.7 ^{â^—} . Astrophysical Journal Letters, 2017, 841, L6.	8.3	44

#	Article	IF	CITATIONS
73	THE <i>L</i> \hat{a}^*f ⁸ CORRELATION FOR ELLIPTICAL GALAXIES WITH CORES: RELATION WITH BLACK HOLE MASS. Astrophysical Journal Letters, 2013, 769, L5.	8.3	43
74	Line-strength indices and velocity dispersions for 148 early-type galaxies in different environments. Astronomy and Astrophysics, 2002, 395, 431-442.	5.1	41
75	Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at $\langle i \rangle z \langle j \rangle = 1.39$. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3181-3209.	4.4	41
76	WeCAPP -Wendelstein Calar Alto pixellensing project I. Astronomy and Astrophysics, 2001, 379, 362-373.	5.1	37
77	FIRST RESULTS FROM THE VIRIAL SURVEY: THE STELLAR CONTENT OF <i>UVJ</i> SELECTED QUIESCENT GALAXIES AT 1.5 < <i>z</i> < 2 FROM KMOS. Astrophysical Journal Letters, 2015, 804, L4.	8.3	35
78	PAndromedaâ€"FIRST RESULTS FROM THE HIGH-CADENCE MONITORING OF M31 WITH Pan-STARRS 1. Astronomical Journal, 2012, 143, 89.	4.7	34
79	REDSHIFT EVOLUTION OF THE DYNAMICAL PROPERTIES OF MASSIVE GALAXIES FROM SDSS-III/BOSS. Astrophysical Journal, 2014, 789, 92.	4.5	34
80	The M31 Microlensing Event WeCAPPâ€GL1/POINTâ€ACAPEâ€S3: Evidence for a MACHO Component in the Dark Halo of M31?. Astrophysical Journal, 2008, 684, 1093-1109.	4.5	32
81	The KMOS ^{3D} Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths*. Astrophysical Journal, 2018, 855, 97.	4.5	32
82	The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4Â<ÂZÂ<Â1.6*. Astrophysical Journal, 2017, 846, 120.	4.5	31
83	Photometric Dissection of Intracluster Light and Its Correlations with Host Cluster Properties. Astrophysical Journal, Supplement Series, 2021, 252, 27.	7.7	30
84	Sculpting Andromeda – made-to-measure models for M31's bar and composite bulge: dynamics, stellar and dark matter mass. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3210-3243.	4.4	28
85	The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M 31 variable star catalogue. Astronomy and Astrophysics, 2006, 445, 423-439.	5.1	27
86	KMOS: an infrared multiple-object integral field spectrograph for the ESO VLT., 2004, 5492, 1179.		26
87	THE M31 NEAR-INFRARED PERIOD-LUMINOSITY RELATION AND ITS NON-LINEARITY FOR δ Cep VARIABLES WITH 0.5 ⩽ log (<i>P</i>) ⩽ 1.7. Astrophysical Journal, 2015, 799, 144.	4.5	26
88	Microlensing toward Crowded Fields: Theory and Applications to M31. Astrophysical Journal, Supplement Series, 2006, 163, 225-269.	7.7	21
89	PROPERTIES OF M31. II. A CEPHEID DISK SAMPLE DERIVED FROM THE FIRST YEAR OF PS1 PANDROMEDA DATA. Astronomical Journal, 2013, 145, 106.	4.7	21
90	Pan-STARRS1 variability of XMM-COSMOS AGN. Astronomy and Astrophysics, 2015, 584, A106.	5.1	20

#	Article	IF	CITATIONS
91	The Kinematics of Massive Quiescent Galaxies at 1.4Â<ÂzÂ<Â2.1: Dark Matter Fractions, IMF Variation, and the Relation to Local Early-type Galaxies*. Astrophysical Journal, 2020, 899, 87.	4.5	19
92	Rotation Curves in z â ¹ /₄ 1–2 Star-forming Disks: Comparison of Dark Matter Fractions and Disk Properties for Different Fitting Methods. Astrophysical Journal, 2021, 922, 143.	4.5	19
93	The KMOS Cluster Survey (KCS). III. Fundamental Plane of Cluster Galaxies at $z\hat{A}\hat{a}\%f\hat{A}1.80$ in JKCS 041*. Astrophysical Journal, 2017, 850, 203.	4.5	17
94	The KMOS Cluster Survey (KCS). II. The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.39Â<ÂzÂ<Â1.61*. Astrophysical Journal, 2018, 856, 8.	4.5	17
95	The 64 Mpixel wide field imager for the Wendelstein 2m telescope: design and calibration. Experimental Astronomy, 2014, 38, 213-248.	3.7	16
96	Structural Analogs of the Milky Way Galaxy: Stellar Populations in the Boxy Bulges of NGC 4565 and NGC 5746 ^{â^—} . Astrophysical Journal, 2019, 872, 106.	4.5	16
97	Cepheids in M31: The PAndromeda Cepheid Sample. Astronomical Journal, 2018, 156, 130.	4.7	15
98	Non-parametric triaxial deprojection of elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3076-3100.	4.4	15
99	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A192.	5.1	15
100	PROPERTIES OF M31. V. 298 ECLIPSING BINARIES FROM PAndromeda. Astrophysical Journal, 2014, 797, 22.	4.5	14
101	The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the MÂ31 nova catalogue. Astronomy and Astrophysics, 2012, 537, A43.	5.1	13
102	Evidence for non-axisymmetry in M 31 from wide-field kinematics of stars and gas. Astronomy and Astrophysics, 2018, 611, A38.	5.1	13
103	Composite bulges – II. Classical bulges and nuclear discs in barred galaxies: the contrasting cases of NGC 4608 and NGC 4643. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2446-2473.	4.4	13
104	Status of the KMOS multi-object near-infrared integral field spectrograph. Proceedings of SPIE, 2012, ,	0.8	12
105	PROPERTIES OF M31. III. CANDIDATE BEAT CEPHEIDS FROM PS1 PANDROMEDA DATA AND THEIR IMPLICATION ON METALLICITY GRADIENT. Astrophysical Journal, 2013, 777, 35.	4.5	12
106	VIRUS-W: an integral field unit spectrograph dedicated to the study of spiral galaxy bulges. , 2008, , .		11
107	Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3. Astrophysical Journal, Supplement Series, 2021, 256, 9.	7.7	11
108	PROPERTIES OF M31. IV. CANDIDATE LUMINOUS BLUE VARIABLES FROM PANDROMEDA. Astrophysical Journal, 2014, 785, 11.	4.5	9

#	Article	IF	CITATIONS
109	MICROLENSING EVENTS FROM THE 11 YEAR OBSERVATIONS OF THE WENDELSTEIN CALAR ALTO PIXELLENSING PROJECT. Astrophysical Journal, 2015, 806, 161.	4.5	9
110	VIRUS-W: commissioning and first-year results of a new integral field unit spectrograph dedicated to the study of spiral galaxy bulges. Proceedings of SPIE, 2012, , .	0.8	8
111	The fundamental plane of EDisCS galaxies <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2016, 596, C1.	5.1	7
112	Improving the Wendelstein Observatory for a 2m-class telescope. Proceedings of SPIE, 2008, , .	0.8	6
113	3kk: the Optical-NIR Multi-Channel Nasmyth Imager for the Wendelstein Fraunhofer Telescope. Proceedings of SPIE, 2010, , .	0.8	6
114	Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves. Astronomy and Astrophysics, 2013, 560, A92.	5.1	6
115	Performance of the K-band multi-object spectrograph (KMOS) on the ESO VLT. Proceedings of SPIE, 2014, , .	0.8	5
116	Commissioning and science verification of the $2m$ -Fraunhofer Wendelstein Telescope. Proceedings of SPIE, 2014 , , .	0.8	4
117	The Wendelstein three channel imager (3KK): alignment, commissioning, and first results. Proceedings of SPIE, 2016, , .	0.8	4
118	M31 PAndromeda Cepheid Sample Observed in Four HST Bands. Astrophysical Journal, 2018, 864, 59.	4.5	4
119	Intrinsic Shapes of Brightest Cluster Galaxies. Astrophysical Journal, 2022, 933, 215.	4.5	4
120	Detailed stellar and gaseous kinematics of M31. Proceedings of the International Astronomical Union, 2014, 10, 334-334.	0.0	0
121	Regrowth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-W. Proceedings of the International Astronomical Union, 2014, 10, 81-84.	0.0	O
122	The potential of using KMOS for multi-object massive star spectroscopy. Proceedings of the International Astronomical Union, 2016, 12, 454-454.	0.0	0