
Swetha Rudraiah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10428099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural Polymer–Based Micronanostructured Scaffolds for Bone Tissue Engineering. Methods in Molecular Biology, 2022, 2394, 669-691.	0.9	4
2	The glucagon-like peptide 1 receptor agonist Exendin-4 induces tenogenesis in human mesenchymal stem cells. Differentiation, 2021, 120, 1-9.	1.9	5
3	Biopolymer-nanotube nerve guidance conduit drug delivery for peripheral nerve regeneration: In vivo structural and functional assessment. Bioactive Materials, 2021, 6, 2881-2893.	15.6	22
4	Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration. Biomedical Materials (Bristol), 2020, 15, 035003.	3.3	23
5	Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. Journal of Controlled Release, 2020, 317, 78-95.	9.9	58
6	Growing a backbone – functional biomaterials and structures for intervertebral disc (IVD) repair and regeneration: challenges, innovations, and future directions. Biomaterials Science, 2020, 8, 1216-1239.	5.4	26
7	Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration. Bioactive Materials, 2020, 5, 468-485.	15.6	91
8	Tendon tissue engineering: biomechanical considerations. Biomedical Materials (Bristol), 2020, 15, 052001.	3.3	21
9	Aligned microchannel polymer-nanotube composites for peripheral nerve regeneration: Small molecule drug delivery. Journal of Controlled Release, 2019, 296, 54-67.	9.9	67
10	Engineered Skin Tissue Equivalents for Product Evaluation and Therapeutic Applications. Biotechnology Journal, 2019, 14, e1900022.	3.5	51
11	Insulin immobilized PCLâ€cellulose acetate microâ€nanostructured fibrous scaffolds for tendon tissue engineering. Polymers for Advanced Technologies, 2019, 30, 1205-1215.	3.2	34
12	Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: <i>In vitro</i> characterization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1792-1805.	3.4	12
13	Review: Bioengineering approach for the repair and regeneration of peripheral nerve. Bioactive Materials, 2019, 4, 107-113.	15.6	47
14	Bioactive polymeric formulations for wound healing. Polymers for Advanced Technologies, 2018, 29, 1815-1825.	3.2	19
15	Nanomaterials/Nanocomposites for Osteochondral Tissue. Advances in Experimental Medicine and Biology, 2018, 1058, 79-95.	1.6	10
16	Spiral Layer-by-Layer Micro-Nanostructured Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 2181-2192.	5.2	31
17	Polymeric 3D printed structures for softâ€ŧissue engineering. Journal of Applied Polymer Science, 2018, 135, 45569.	2.6	25
18	Biodegradable polymeric injectable implants for longâ€ŧerm delivery of contraceptive drugs. Journal of Applied Polymer Science, 2018, 135, 46068.	2.6	73

Swetha Rudraiah

#	Article	IF	CITATIONS
19	Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 2016, 1, 93-108.	15.6	336
20	Oxidative stress-responsive transcription factor NRF2 is not indispensable for the human hepatic Flavin-containing monooxygenase-3 (FMO3) gene expression in HepG2 cells. Toxicology in Vitro, 2016, 31, 54-59.	2.4	7
21	Nuclear Receptors as Therapeutic Targets in Liver Disease: Are We There Yet?. Annual Review of Pharmacology and Toxicology, 2016, 56, 605-626.	9.4	62
22	From hepatoprotection models to new therapeutic modalities for treating liver diseases: a personal perspective. F1000Research, 2016, 5, 1698.	1.6	3
23	From hepatoprotection models to new therapeutic modalities for treating liver diseases: a personal perspective. F1000Research, 2016, 5, 1698.	1.6	2
24	Role of nuclear factor-erythroid 2-related factor 2 (Nrf2) in the transcriptional regulation of brain ABC transporters during acute acetaminophen (APAP) intoxication in mice. Biochemical Pharmacology, 2015, 94, 203-211.	4.4	26
25	Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice. Gastroenterology, 2015, 148, 1012-1023.e14.	1.3	43
26	Tolerance to Acetaminophen Hepatotoxicity in the Mouse Model of Autoprotection Is Associated with Induction of Flavin-Containing Monooxygenase-3 (FMO3) in Hepatocytes. Toxicological Sciences, 2014, 141, 263-277.	3.1	22
27	Is Nuclear Factor Erythroid 2–Related Factor 2 Responsible for Sex Differences in Susceptibility to Acetaminophen-Induced Hepatotoxicity in Mice?. Drug Metabolism and Disposition, 2014, 42, 1663-1674.	3.3	23
28	Differential Fmo3 gene expression in various liver injury models involving hepatic oxidative stress in mice. Toxicology, 2014, 325, 85-95.	4.2	17