
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	27.8	1,448
2	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
3	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	12.6	876
4	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
5	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	27.8	540
6	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
7	Toward Direct Measurement of Atmospheric Nucleation. Science, 2007, 318, 89-92.	12.6	478
8	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.	47.7	460
9	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
10	A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3, 1039-1053.	3.1	436
11	Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 2012, 7, 1651-1667.	12.0	435
12	Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 2004, 38, 2895-2907.	4.1	422
13	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361, 278-281.	12.6	415
14	Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmospheric Chemistry and Physics, 2012, 12, 4117-4125.	4.9	393
15	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	4.9	392
16	New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, 352, 1109-1112.	12.6	348
17	Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7123-7128.	7.1	337
18	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	4.9	308

#	Article	IF	CITATIONS
19	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	7.1	300
20	Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 2013, 6, 438-442.	12.9	282
21	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	27.8	237
22	The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene. Journal of the American Chemical Society, 2014, 136, 15596-15606.	13.7	236
23	Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 2012, 12, 5113-5127.	4.9	222
24	Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmospheric Measurement Techniques, 2010, 3, 91-112.	3.1	215
25	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	7.1	208
26	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	10.0	172
27	Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	4.9	170
28	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmospheric Chemistry and Physics, 2011, 11, 9019-9036.	4.9	160
29	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	4.9	144
30	Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmospheric Chemistry and Physics, 2016, 16, 12715-12731.	4.9	118
31	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
32	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	3.3	99
33	H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature. Atmospheric Environment, 2014, 89, 603-612.	4.1	97
34	Laboratory studies of H ₂ SO ₄ /H <sub&ar binary homogeneous nucleation from the SO₂+OH reaction: evaluation of the experimental setup and preliminary results. Atmospheric Chemistry and Physics,</sub&ar 	np;gt;2&a 4.9	mp;lt;/sub&a 95
35	2008, 8, 4997-5016. Reactivity of stabilized Criegee intermediates (sCls) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	4.9	94
36	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	12.6	94

#	Article	IF	CITATIONS
37	Competing atmospheric reactions of CH ₂ OO with SO ₂ and water vapour. Physical Chemistry Chemical Physics, 2014, 16, 19130.	2.8	93
38	Quantifying the Impact of Residential Heating on the Urban Air Quality in a Typical European Coal Combustion Region. Environmental Science & amp; Technology, 2009, 43, 7964-7970.	10.0	90
39	Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO ₂ . Journal of Physical Chemistry Letters, 2012, 3, 2892-2896.	4.6	88
40	A look at aerosol formation using data mining techniques. Atmospheric Chemistry and Physics, 2005, 5, 3345-3356.	4.9	87
41	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	4.9	84
42	Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010. Atmospheric Chemistry and Physics, 2012, 12, 8475-8489.	4.9	82
43	Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign. Atmospheric Chemistry and Physics, 2011, 11, 1065-1082.	4.9	79
44	Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal Antarctica. Science Advances, 2018, 4, eaat9744.	10.3	79
45	Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.	4.9	74
46	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.	3.2	74
47	Observation of regional new particle formation in the urban atmosphere. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 509.	1.6	73
48	An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Science and Technology, 2011, 45, 522-532.	3.1	72
49	Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range. Aerosol Science and Technology, 2013, 47, 556-563.	3.1	70
50	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	4.0	70
51	The effect of H ₂ SO ₄ – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmospheric Chemistry and Physics, 2011, 11, 3007-3019.	4.9	69
52	The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.	4.9	66
53	Sub-micron atmospheric aerosols in the surroundings of Marseille and Athens: physical characterization and new particle formation. Atmospheric Chemistry and Physics, 2007, 7, 2705-2720.	4.9	64
54	Time span and spatial scale of regional new particle formation events over Finland and Southern Sweden. Atmospheric Chemistry and Physics, 2009, 9, 4699-4716.	4.9	64

#	Article	IF	CITATIONS
55	lon mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species. Atmospheric Measurement Techniques, 2016, 9, 3245-3262.	3.1	64
56	Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar5218.	10.3	64
57	Non-volatile residuals of newly formed atmospheric particles in the boreal forest. Atmospheric Chemistry and Physics, 2007, 7, 677-684.	4.9	57
58	Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest. Atmospheric Chemistry and Physics, 2009, 9, 3317-3330.	4.9	56
59	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	4.9	56
60	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	4.4	54
61	Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. Journal of Chromatography A, 2005, 1071, 29-39.	3.7	53
62	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÃѬ҈ҎFinland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	4.9	53
63	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	4.0	53
64	Mode resolved density of atmospheric aerosol particles. Atmospheric Chemistry and Physics, 2008, 8, 5327-5337.	4.9	52
65	Observations on nocturnal growth of atmospheric clusters. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 365.	1.6	51
66	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	10.0	51
67	Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland–forest mosaic. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 353.	1.6	48
68	Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2011, 4, 2767-2776.	3.1	47
69	Observations of nighttime new particle formation in the troposphere. Journal of Geophysical Research, 2008, 113, .	3.3	46
70	Long-term volatility measurements of submicron atmospheric aerosol in HyytiÃѬ҈¤Finland. Atmospheric Chemistry and Physics, 2012, 12, 10771-10786.	4.9	45
71	New insights into nocturnal nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4297-4312.	4.9	45
72	Heterogeneous Nucleation onto Ions and Neutralized Ions: Insights into Sign-Preference. Journal of Physical Chemistry C, 2016, 120, 7444-7450.	3.1	45

#	Article	IF	CITATIONS
73	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	3.1	44
74	Observations of Nano-CN in the Nocturnal Boreal Forest. Aerosol Science and Technology, 2011, 45, 499-509.	3.1	43
75	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	4.0	43
76	Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere. Atmospheric Chemistry and Physics, 2015, 15, 3413-3428.	4.9	42
77	Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmospheric Chemistry and Physics, 2008, 8, 1017-1027.	4.9	41
78	Classifying previously undefined days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, HyytiÃIĤFinland. Atmospheric Chemistry and Physics, 2009, 9, 667-676.	4.9	40
79	Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 2021, 14, 4-9.	12.9	40
80	Trajectory analysis of atmospheric transport of fine particles, SO ₂ , NO _x and O ₃ to the SMEAR II station in Finland in 1996–2008. Atmospheric Chemistry and Physics, 2013, 13, 2153-2164.	4.9	38
81	High-Resolution Mobility and Mass Spectrometry of Negative Ions Produced in a ²⁴¹ Am Aerosol Charger. Aerosol Science and Technology, 2014, 48, 261-270.	3.1	37
82	Sizing of neutral sub 3nm tungsten oxide clusters using Airmodus Particle Size Magnifier. Journal of Aerosol Science, 2015, 87, 53-62.	3.8	37
83	Refined classification and characterization of atmospheric new-particle formation events using air ions. Atmospheric Chemistry and Physics, 2018, 18, 17883-17893.	4.9	35
84	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	4.9	34
85	Comparing simulated and experimental molecular cluster distributions. Faraday Discussions, 2013, 165, 75.	3.2	33
86	The role of H ₂ SO ₄ -NH <sub&a anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 13231-13243.</sub&a 	mp;gt;3&a 4 :9	amp;lt;/sub&a
87	The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors. Combustion and Flame, 2017, 176, 72-80.	5.2	31
88	Comprehensive analysis of particle growth rates from nucleation mode to cloud condensation nuclei in boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 12085-12103.	4.9	31
89	Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest. Atmospheric Measurement Techniques, 2015, 8, 4001-4011.	3.1	30
90	Sulphuric acid and aerosol particle production in the vicinity of an oil refinery. Atmospheric Environment, 2015, 119, 156-166.	4.1	29

#	Article	IF	CITATIONS
91	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	3.3	29
92	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	4.9	28
93	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <sub and ternary (H₂SO₄–H<sub< td=""><td>4.9</td><td>27</td></sub<></sub 	4.9	27
94	Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmospheric Chemistry and Physics, 2019, 19, 10239-10256.	4.9	25
95	Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland). Atmospheric Chemistry and Physics, 2017, 17, 2613-2629.	4.9	24
96	A novel approach for simple statistical analysis of high-resolution mass spectra. Atmospheric Measurement Techniques, 2019, 12, 3761-3776.	3.1	24
97	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	4.9	23
98	Local Air Pollution versus Short–range Transported Dust Episodes: A Comparative Study for Submicron Particle Number Concentration. Aerosol and Air Quality Research, 2011, 11, 109-119.	2.1	23
99	Analysis of particle size distribution changes between three measurement sites in northern Scandinavia. Atmospheric Chemistry and Physics, 2013, 13, 11887-11903.	4.9	22
100	Exploring non-linear associations between atmospheric new-particle formation and ambient variables: a mutual information approach. Atmospheric Chemistry and Physics, 2018, 18, 12699-12714.	4.9	21
101	Characterization of organic compounds in 10- to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques. Atmospheric Environment, 2011, 45, 3711-3719.	4.1	20
102	Observation of incipient particle formation during flame synthesis by tandem differential mobility analysis-mass spectrometry (DMA-MS). Proceedings of the Combustion Institute, 2017, 36, 745-752.	3.9	20
103	Indoor Model Simulation for COVID-19 Transport and Exposure. International Journal of Environmental Research and Public Health, 2021, 18, 2927.	2.6	19
104	Prescribed burning of logging slash in the boreal forest of Finland: emissions and effects on meteorological quantities and soil properties. Atmospheric Chemistry and Physics, 2014, 14, 4473-4502.	4.9	17
105	Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	4.9	17
106	Composition of negative air ions as a function of ion age and selected trace gases: Mass- and mobility distribution. Journal of Aerosol Science, 2011, 42, 820-838.	3.8	16
107	The importance of sesquiterpene oxidation products for secondary organic aerosol formation in a springtime hemiboreal forest. Atmospheric Chemistry and Physics, 2021, 21, 11781-11800.	4.9	16
108	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Technology, 2022, 56, 770-778.	10.0	16

#	Article	IF	CITATIONS
109	Carbon clusters in 50nm urban air aerosol particles quantified by laser desorption–ionization aerosol mass spectrometer. International Journal of Mass Spectrometry, 2014, 358, 17-24.	1.5	14
110	Cluster formation mechanisms of titanium dioxide during combustion synthesis: Observation with an APi-TOF. Aerosol Science and Technology, 2017, 51, 1071-1081.	3.1	14
111	Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest. Atmospheric Chemistry and Physics, 2021, 21, 695-715.	4.9	14
112	Regression models tolerant to massively missing data: a case study in solar-radiation nowcasting. Atmospheric Measurement Techniques, 2014, 7, 4387-4399.	3.1	13
113	Predicting atmospheric particle formation days by Bayesian classification of the time series features. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1530031.	1.6	13
114	Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site. Atmospheric Chemistry and Physics, 2019, 19, 3645-3672.	4.9	13
115	Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments. Environmental Science and Technology Letters, 2016, 3, 42-46.	8.7	12
116	Insights into atmospheric oxidation processes by performing factor analyses on subranges of mass spectra. Atmospheric Chemistry and Physics, 2020, 20, 5945-5961.	4.9	11
117	Quiet New Particle Formation in the Atmosphere. Frontiers in Environmental Science, 0, 10, .	3.3	10
118	Observations of ozone depletion events in a Finnish boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 49-63.	4.9	9
119	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	6.8	8
120	Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN. Atmospheric Measurement Techniques, 2014, 7, 3849-3859.	3.1	7
121	The initial stages of multicomponent particle formation during the gas phase combustion synthesis of mixed SiO2/TiO2. Aerosol Science and Technology, 2018, 52, 277-286.	3.1	7
122	Changes in concentration of nitrogen-containing compounds in 10nm particles of boreal forest atmosphere at snowmelt. Journal of Aerosol Science, 2014, 70, 1-10.	3.8	5
123	Forest canopy mitigates soil N2O emission during hot moments. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	5
124	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	4.9	5
125	Comparison of formation conditions of secondary aerosol particles in boreal forests of Southern Finland and Siberia. Russian Journal of Earth Sciences, 2010, 11, 1-11.	0.7	2

Role of organics in particle nucleation: From the lab to global model. , 2013, , .

1

#	Article	IF	CITATIONS
127	Cluster measurements at CLOUD using a high resolution ion mobility spectrometer-mass spectrometer combination. , 2013, , .		1
128	Molecular steps of neutral sulfuric acid and dimethylamine nucleation in CLOUD. , 2013, , .		1
129	Does the onset of new particle formation occur in the planetary boundary layer?. , 2013, , .		1
130	The charging of neutral dimethylamine and dimethylamine–sulfuric acid clusters using protonated acetone. Atmospheric Measurement Techniques, 2015, 8, 2577-2588.	3.1	1
131	Atmospheric pressure thermal desorption chemical ionization mass spectrometry for ultra-sensitive explosive detection. Talanta, 2022, 249, 123653.	5.5	1
132	PARTICULATE MATTER AND POLYAROMATIC COMPOUNDS IN AIR OVER ATHENS DURING THE BOND SUMMER CAMPAIGN, JUNE 2003. Journal of Aerosol Science, 2004, 35, S1065-S1066.	3.8	0
133	Corrigendum to "Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010" published in Atmos. Chem. Phys., 12, 8475–8489, 2012. Atmospheric Chemistry and Physics, 2012, 12, 11765-11765.	4.9	0
134	Characterization of positive clusters in the CLOUD nucleation experiments. , 2013, , .		0
135	Analysis of particle size distribution changes between three measurement sites in Northern Scandinavia. , 2013, , .		0
136	Measurement of neutral sulfuric acid-dimethylamine clusters using CI-APi-TOF-MS. , 2013, , .		0
137	On atmospheric neutral and ion clusters observed in Hyytial^lal^ spring 2011. , 2013, , .		0
138	Measuring composition and growth of ion clusters of sulfuric acid, ammonia, amines and oxidized organics as first steps of nucleation in the CLOUD experiment. , 2013, , .		0
139	Probing aerosol formation by comprehensive measurements of gas phase oxidation products. , 2013, , .		0
140	The particle size magnifier closing the gap between measurement of molecules, molecular clusters and aerosol particles. , 2013, , .		0
141	lon generation and CPC detection efficiency studies in sub 3-nm size range. , 2013, , .		0
142	Particle nucleation events at the high Alpine station Jungfraujoch. , 2013, , .		0
143	Nucleation of H[sub 2]SO[sub 4] and oxidized organics in CLOUD experiment. , 2013, , .		0
144	Evolution of α-pinene oxidation products in the presence of varying oxidizers: Negative APi-TOF point of view. , 2013, , .		0

#	Article	IF	CITATIONS
145	Evolution of alpha-pinene oxidation products in the presence of varying oxidizers: CI-APi-TOF point of view. , 2013, , .		Ο
146	Chemistry of stabilized Criegee intermediates in the CLOUD chamber. , 2013, , .		0
147	Sulphur dioxide and sulphuric acid concentrations in the vicinity of Kilpilahti industrial area. , 2013, , .		О