Binh An Diep

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10427344/publications.pdf

Version: 2024-02-01

		109264	149623
56	7,062 citations	35	56
papers	citations	h-index	g-index
58	58	58	6025
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet, The, 2006, 367, 731-739.	6.3	1,440
2	The Arginine Catabolic Mobile Element and Staphylococcal Chromosomal Cassette (i>mec ⟨ i > Linkage: Convergence of Virulence and Resistance in the USA300 Clone of Methicillinâ€Resistant (i>Staphylococcus aureus ⟨ i > . Journal of Infectious Diseases, 2008, 197, 1523-1530.	1.9	378
3	Evolution of virulence in epidemic community-associated methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5883-5888.	3.3	354
4	Emergence of Multidrug-Resistant, Community-Associated, Methicillin-Resistant <i>Staphylococcus aureus</i> Clone USA300 in Men Who Have Sex with Men. Annals of Internal Medicine, 2008, 148, 249.	2.0	344
5	Polymorphonuclear leukocytes mediate <i>Staphylococcus aureus</i> Panton-Valentine leukocidin-induced lung inflammation and injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5587-5592.	3.3	306
6	Colonization, Fomites, and Virulence: Rethinking the Pathogenesis of Community-Associated Methicillin-Resistant Staphylococcus aureus Infection. Clinical Infectious Diseases, 2008, 46, 752-760.	2.9	277
7	The role of virulence determinants in community-associated MRSA pathogenesis. Trends in Microbiology, 2008, 16, 361-369.	3.5	276
8	Roles of 34 Virulence Genes in the Evolution of Hospital―and Communityâ€Associated Strains of Methicillinâ€ResistantStaphylococcus aureus. Journal of Infectious Diseases, 2006, 193, 1495-1503.	1.9	273
9	MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nature Medicine, 2012, 18, 816-819.	15.2	242
10	Widespread Skin and Soft-Tissue Infections Due to Two Methicillin-Resistant Staphylococcus aureus Strains Harboring the Genes for Panton-Valentine Leucocidin. Journal of Clinical Microbiology, 2004, 42, 2080-2084.	1.8	236
11	Communityâ€Adapted Methicillinâ€ResistantStaphylococcus aureus(MRSA): Population Dynamics of an Expanding Community Reservoir of MRSA. Journal of Infectious Diseases, 2004, 190, 1730-1738.	1.9	220
12	Global Changes in Staphylococcus aureus Gene Expression in Human Blood. PLoS ONE, 2011, 6, e18617.	1.1	205
13	Host Defense and Pathogenesis in Staphylococcus aureus Infections. Infectious Disease Clinics of North America, 2009, 23, 17-34.	1.9	203
14	A Populationâ€Based Study of the Incidence and Molecular Epidemiology of Methicillinâ€Resistant <i>Staphylococcus aureus</i> Disease in San Francisco, 2004–2005. Clinical Infectious Diseases, 2008, 46, 1637-1646.	2.9	182
15	Contribution of Panton-Valentine Leukocidin in Community-Associated Methicillin-Resistant Staphylococcus aureus Pathogenesis. PLoS ONE, 2008, 3, e3198.	1.1	170
16	Differential Expression and Roles of Staphylococcus aureus Virulence Determinants during Colonization and Disease. MBio, 2015, 6, e02272-14.	1.8	152
17	Population Dynamics of Nasal Strains of Methicillinâ€ResistantStaphylococcus aureus—and Their Relation to Communityâ€Associated Disease Activity. Journal of Infectious Diseases, 2005, 192, 811-818.	1.9	135
18	PSMs of Hypervirulent Staphylococcus aureus Act as Intracellular Toxins That Kill Infected Osteoblasts. PLoS ONE, 2013, 8, e63176.	1.1	103

#	Article	IF	Citations
19	Genetic Diversity of Arginine Catabolic Mobile Element in Staphylococcus epidermidis. PLoS ONE, 2009, 4, e7722.	1.1	103
20	Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cellular Microbiology, 2012, 14, 1019-1036.	1.1	99
21	The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus. Clinical Microbiology Reviews, 2017, 30, 887-917.	5.7	95
22	Clonal Composition of Staphylococcus aureus Isolates at a Brazilian University Hospital: Identification of International Circulating Lineages. Journal of Clinical Microbiology, 2006, 44, 1686-1691.	1.8	93
23	$\langle i \rangle$ Staphylococcus aureus $\langle i \rangle$ Î \pm toxin potentiates opportunistic bacterial lung infections. Science Translational Medicine, 2016, 8, 329ra31.	5.8	93
24	Staphylococcus aureus Panton-Valentine Leukocidin Contributes to Inflammation and Muscle Tissue Injury. PLoS ONE, 2009, 4, e6387.	1.1	87
25	Global Gene Expression of Methicillin-resistant Staphylococcus aureus USA300 During Human and Mouse Infection. Journal of Infectious Diseases, 2014, 209, 1542-1550.	1.9	73
26	Effects of Linezolid on Suppressing In Vivo Production of Staphylococcal Toxins and Improving Survival Outcomes in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia. Journal of Infectious Diseases, 2013, 208, 75-82.	1.9	72
27	IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Science Translational Medicine, 2016, 8, 357ra124.	5.8	70
28	Concurrent Epidemics of Skin and Soft Tissue Infection and Bloodstream Infection Due to Community-Associated Methicillin-Resistant Staphylococcus aureus. Clinical Infectious Diseases, 2012, 55, 781-788.	2.9	66
29	Toxin-Triggered Interleukin-1 Receptor Signaling Enables Early-Life Discrimination of Pathogenic versus Commensal Skin Bacteria. Cell Host and Microbe, 2019, 26, 795-809.e5.	5.1	59
30	Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin. Antimicrobial Agents and Chemotherapy, 2016, 60, 6333-6340.	1.4	58
31	Clonal Characterization of Staphylococcus aureus by Multilocus Restriction Fragment Typing, a Rapid Screening Approach for Molecular Epidemiology. Journal of Clinical Microbiology, 2003, 41, 4559-4564.	1.8	45
32	Selected insights from application of whole-genome sequencing for outbreak investigations. Current Opinion in Critical Care, 2013, 19, 432-439.	1.6	45
33	Methicillin-ResistantStaphylococcus aureusUSA300 Clone in Long-Term Care Facility. Emerging Infectious Diseases, 2009, 15, 953-955.	2.0	41
34	Characterization of Baseline Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates Recovered from Phase IV Clinical Trial for Linezolid. Journal of Clinical Microbiology, 2010, 48, 568-574.	1.8	40
35	Identifying Potential Therapeutic Targets of Methicillin-resistant Staphylococcus aureus Through in Vivo Proteomic Analysis. Journal of Infectious Diseases, 2014, 209, 1533-1541.	1.9	40
36	Critical Role of Alpha-Toxin and Protective Effects of Its Neutralization by a Human Antibody in Acute Bacterial Skin and Skin Structure Infections. Antimicrobial Agents and Chemotherapy, 2016, 60, 5640-5648.	1.4	38

#	Article	IF	Citations
37	Targeting Alpha Toxin To Mitigate Its Lethal Toxicity in Ferret and Rabbit Models of Staphylococcus aureus Necrotizing Pneumonia. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	37
38	MEDI3902 Correlates of Protection against Severe Pseudomonas aeruginosa Pneumonia in a Rabbit Acute Pneumonia Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	33
39	Relative contribution of Panton-Valentine leukocidin to PMN plasma membrane permeability and lysis caused by USA300 and USA400 culture supernatants. Microbes and Infection, 2010, 12, 446-456.	1.0	31
40	Recurrence of Skin and Soft Tissue Infection Caused by Methicillin-Resistant Staphylococcus aureus in a HIV Primary Care Clinic. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 49, 231-233.	0.9	30
41	Efficacy of Active Immunization With Attenuated α-Hemolysin and Panton-Valentine Leukocidin in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. Journal of Infectious Diseases, 2020, 221, 267-275.	1.9	23
42	Long-Term Follow-Up of Methicillin-Resistant <i>Staphylococcus aureus</i> Molecular Epidemiology after Emergence of Clone USA300 in San Francisco Jail Populations. Journal of Clinical Microbiology, 2008, 46, 4056-4057.	1.8	21
43	Linezolid Effects on Bacterial Toxin Production and Host Immune Response: Review of the Evidence. Current Therapeutic Research, 2012, 73, 86-102.	0.5	20
44	Treatment Efficacy of MEDI3902 in Pseudomonas aeruginosa Bloodstream Infection and Acute Pneumonia Rabbit Models. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	19
45	Protective Efficacy of Monoclonal Antibodies Neutralizing Alpha-Hemolysin and Bicomponent Leukocidins in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	17
46	IBT-V02: A Multicomponent Toxoid Vaccine Protects Against Primary and Secondary Skin Infections Caused by Staphylococcus aureus. Frontiers in Immunology, 2021, 12, 624310.	2.2	17
47	Use of whole-genome sequencing for outbreak investigations. Lancet Infectious Diseases, The, 2013, 13, 99-101.	4.6	16
48	Panton-Valentine leucocidin and pneumonia. Lancet Infectious Diseases, The, 2013, 13, 566.	4.6	15
49	Effects of Tedizolid Phosphate on Survival Outcomes and Suppression of Production of Staphylococcal Toxins in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	13
50	Demographic fluctuation of community-acquired antibiotic-resistant <i>Staphylococcus aureus</i> lineages: potential role of flimsy antibiotic exposure. ISME Journal, 2018, 12, 1879-1894.	4.4	11
51	FDA Public Workshop Summary: Advancing Animal Models for Antibacterial Drug Development. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	11
52	Pseudomonas aeruginosa Ventilator-Associated Pneumonia Rabbit Model for Preclinical Drug Development. Antimicrobial Agents and Chemotherapy, 2021, 65, e0272420.	1.4	9
53	Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High Rates of Internalization and Cytotoxicity Toward Human Myoblasts. Journal of Infectious Diseases, 2019, 220, 710-719.	1.9	8
54	Staphylococcus aureus Interferes with Streptococci Spatial Distribution and with Protein Expression of Species within a Polymicrobial Oral Biofilm. Antibiotics, 2021, 10, 116.	1.5	8

#	Article	IF	CITATIONS
55	Multimechanistic Monoclonal Antibody Combination Targeting Key Staphylococcus aureus Virulence Determinants in a Rabbit Model of Prosthetic Joint Infection. Antimicrobial Agents and Chemotherapy, 2021, 65, e0183220.	1.4	8
56	Antivirulence Bispecific Monoclonal Antibody-Mediated Protection against Pseudomonas aeruginosa Ventilator-Associated Pneumonia in a Rabbit Model. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0202221.	1.4	2