Graham Christie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coordination Chemistry Reviews, 2022, 457, 214402.	18.8	28
2	Phenotypic whole-cell screening identifies a protective carbohydrate epitope on <i>Klebsiella pneumoniae</i> . MAbs, 2022, 14, 2006123.	5.2	5
3	Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Scientific Reports, 2022, 12, 6580.	3.3	11
4	Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Advanced Science, 2021, 8, e2100864.	11.2	259
5	What's new and notable in bacterial spore killing!. World Journal of Microbiology and Biotechnology, 2021, 37, 144.	3.6	22
6	Thrombolytic Enzymes of Microbial Origin: A Review. International Journal of Molecular Sciences, 2021, 22, 10468.	4.1	12
7	Key ingredients and recycling strategy of personal protective equipment (PPE): Towards sustainable solution for the COVID-19 like pandemics. Journal of Environmental Chemical Engineering, 2021, 9, 106284.	6.7	44
8	Characterization of Heterogeneity and Dynamics of Lysis of Single <i>Bacillus subtilis</i> Cells upon Prophage Induction During Spore Germination, Outgrowth, and Vegetative Growth Using Raman Tweezers and Live-Cell Phase-Contrast Microscopy. Analytical Chemistry, 2021, 93, 1443-1450.	6.5	5
9	Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microbial Cell Factories, 2021, 20, 208.	4.0	17
10	Bacterial Spore mRNA – What's Up With That?. Frontiers in Microbiology, 2020, 11, 596092.	3.5	13
11	Bacillus spore germination: Knowns, unknowns and what we need to learn. Cellular Signalling, 2020, 74, 109729.	3.6	68
12	DNA Nanostructures for Targeted Antimicrobial Delivery. Angewandte Chemie - International Edition, 2020, 59, 12698-12702.	13.8	48
13	DNA Nanostructures for Targeted Antimicrobial Delivery. Angewandte Chemie, 2020, 132, 12798-12802.	2.0	15
14	Biochemical and mutational analysis of spore cortex-lytic enzymes in the food spoiler Bacillus licheniformis. Food Microbiology, 2019, 84, 103259.	4.2	8
15	Novel cortex lytic enzymes in <i>Bacillus megaterium</i> QM B1551 spores. FEMS Microbiology Letters, 2019, 366, .	1.8	3
16	Paramagnetism in <i>Bacillus</i> spores: Opportunities for novel biotechnological applications. Biotechnology and Bioengineering, 2018, 115, 955-964.	3.3	4
17	A system for the expression and release of heterologous proteins from the core of <i>Bacillus subtilis</i> spores. FEMS Microbiology Letters, 2018, 365, .	1.8	4
18	Novel salts of dipicolinic acid as viscosity modifiers for high concentration antibody solutions. International Journal of Pharmaceutics, 2018, 548, 682-688.	5.2	10

#	Article	IF	CITATIONS
19	Proteins Encoded by the <i>gerP</i> Operon Are Localized to the Inner Coat in Bacillus cereus Spores and Are Dependent on GerPA and SafA for Assembly. Applied and Environmental Microbiology, 2018, 84,	3.1	15
20	Orthologues of Bacillus subtilis Spore Crust Proteins Have a Structural Role in the Bacillus megaterium QM B1551 Spore Exosporium. Applied and Environmental Microbiology, 2018, 84, .	3.1	9
21	Identification and initial characterisation of a protein involved in Campylobacter jejuni cell shape. Microbial Pathogenesis, 2017, 104, 202-211.	2.9	12
22	Effects of culture conditions on the size, morphology and wet density of spores of <i>Bacillus cereus</i> 569 and <i>Bacillus megaterium</i> QM B1551. Letters in Applied Microbiology, 2017, 65, 50-56.	2.2	18
23	Dipicolinic acid as a novel spore-inspired excipient for antibody formulation. International Journal of Pharmaceutics, 2017, 526, 332-338.	5.2	4
24	Assessing the Impact of Germination and Sporulation Conditions on the Adhesion of <i>Bacillus</i> Spores to Glass and Stainless Steel by Fluid Dynamic Gauging. Journal of Food Science, 2017, 82, 2614-2625.	3.1	8
25	SpoVT: From Fine-Tuning Regulator in Bacillus subtilis to Essential Sporulation Protein in Bacillus cereus. Frontiers in Microbiology, 2016, 7, 1607.	3.5	9
26	The Exosporium of Bacillus megaterium QM B1551 Is Permeable to the Red Fluorescence Protein of the Coral Discosoma sp Frontiers in Microbiology, 2016, 7, 1752.	3.5	14
27	Genomic variations leading to alterations in cell morphology of Campylobacter spp. Scientific Reports, 2016, 6, 38303.	3.3	25
28	The crystal structure of <i>Clostridium perfringens</i> SleM, a muramidase involved in cortical hydrolysis during spore germination. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1681-1689.	2.6	7
29	Ellipsoid Localization Microscopy Infers the Size and Order of Protein Layers in Bacillus Spore Coats. Biophysical Journal, 2015, 109, 2058-2066.	0.5	13
30	Structural and functional analysis of SleL, a peptidoglycan lysin involved in germination of B acillus spores. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1787-1799.	2.6	12
31	The GerW Protein Is Not Involved in the Germination of Spores of Bacillus Species. PLoS ONE, 2015, 10, e0119125.	2.5	4
32	Structure–function analysis of theBacillus megateriumGerUD spore germinant receptor protein. FEMS Microbiology Letters, 2015, 362, fnv210.	1.8	5
33	Plasmid-encoded genes influence exosporium assembly and morphology inBacillus megateriumQM B1551 spores. FEMS Microbiology Letters, 2015, 362, fnv147.	1.8	11
34	Crystal structure of the PepSY-containing domain of the YpeB protein involved in germination of <i>bacillus</i> spores. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1914-1921.	2.6	7
35	BMQ_0737 encodes a novel protein crucial to the integrity of the outermost layers of <i>Bacillus megaterium</i> QM B1551 spores. FEMS Microbiology Letters, 2014, 358, 162-169.	1.8	4
36	Spore Germination Mediated by Bacillus megaterium QM B1551 SleL and YpeB. Journal of Bacteriology, 2014, 196, 1045-1054.	2.2	12

GRAHAM CHRISTIE

#	Article	IF	CITATIONS
37	Investigating the Functional Hierarchy of Bacillus megaterium PV361 Spore Germinant Receptors. Journal of Bacteriology, 2013, 195, 3045-3053.	2.2	23
38	Activity and Regulation of Various Forms of CwlJ, SleB, and YpeB Proteins in Degrading Cortex Peptidoglycan of Spores of Bacillus Species In Vitro and during Spore Germination. Journal of Bacteriology, 2013, 195, 2530-2540.	2.2	47
39	Identification of New Proteins That Modulate the Germination of Spores of Bacillus Species. Journal of Bacteriology, 2013, 195, 3009-3021.	2.2	27
40	Mutational Analysis of Bacillus megaterium QM B1551 Cortex-Lytic Enzymes. Journal of Bacteriology, 2010, 192, 5378-5389.	2.2	21
41	Identification of a Receptor Subunit and Putative Ligand-Binding Residues Involved in the Bacillus megaterium QM B1551 Spore Germination Response to Glucose. Journal of Bacteriology, 2010, 192, 4317-4326.	2.2	32
42	Functional Consequences of Amino Acid Substitutions to GerVB, a Component of the <i>Bacillus megaterium</i> Spore Germinant Receptor. Journal of Bacteriology, 2008, 190, 2014-2022.	2.2	30
43	Amino Acid Substitutions in Transmembrane Domains 9 and 10 of GerVB That Affect the Germination Properties of <i>Bacillus megaterium</i> Spores. Journal of Bacteriology, 2008, 190, 8009-8017.	2.2	19
44	Role of Chromosomal and Plasmid-Borne Receptor Homologues in the Response of Bacillus megaterium QM B1551 Spores to Germinants. Journal of Bacteriology, 2007, 189, 4375-4383.	2.2	50
45	The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation. Science of the Total Environment, 2006, 363, 1-10.	8.0	66
46	Divalent metal ion-sensitive holographic sensors. Analytica Chimica Acta, 2005, 528, 219-228.	5.4	44