Yanding Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antagonistic Signals between BMP4 and FGF8 Define the Expression of Pitx1 and Pitx2 in Mouse Tooth-Forming Anlage. Developmental Biology, 2000, 217, 323-332.	2.0	183
2	Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate. Development (Cambridge), 2005, 132, 4397-4406.	2.5	133
3	The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Biomaterials, 2011, 32, 7053-7059.	11.4	109
4	A common <i>Shox2</i> - <i>Nkx2-5</i> antagonistic mechanism primes the pacemaking cell fate in the pulmonary vein myocardium and sinoatrial node. Development (Cambridge), 2015, 142, 2521-32.	2.5	105
5	Msx1 is required for the induction ofPatched bySonic hedgehog in the mammalian tooth germ. Developmental Dynamics, 1999, 215, 45-53.	1.8	76
6	Expression survey of genes critical for tooth development in the human embryonic tooth germ. Developmental Dynamics, 2007, 236, 1307-1312.	1.8	53
7	Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Developmental Dynamics, 2006, 235, 1347-1357.	1.8	52
8	Induction of human keratinocytes into enamel-secreting ameloblasts. Developmental Biology, 2010, 344, 795-799.	2.0	48
9	Expression patterns of WNT/β-CATENIN signaling molecules during human tooth development. Journal of Molecular Histology, 2014, 45, 487-496.	2.2	47
10	The evolutionary origin and domestication history of goldfish (<i>Carassius auratus</i>). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29775-29785.	7.1	47
11	Timing of odontogenic neural crest cell migration and tooth-forming capability in mice. Developmental Dynamics, 2003, 226, 713-718.	1.8	41
12	Directed Bmp4 expression in neural crest cells generates a genetic model for the rare human bony syngnathia birth defect. Developmental Biology, 2014, 391, 170-181.	2.0	39
13	Expression of SHH signaling pathway components in the developing human lung. Histochemistry and Cell Biology, 2010, 134, 327-335.	1.7	35
14	FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development (Cambridge), 2013, 140, 4375-4385.	2.5	34
15	Overexpression of acetyl-CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii. Biotechnology Letters, 2019, 41, 1133-1145.	2.2	33
16	Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice. Cell and Tissue Research, 2019, 376, 199-210.	2.9	30
17	Expression of SHH signaling molecules in the developing human primary dentition. BMC Developmental Biology, 2013, 13, 11.	2.1	28
18	FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells <i>in vivo</i> and <i>in vitro</i> . Journal of Molecular Cell Biology, 2015, 7, 441-454.	3.3	28

YANDING ZHANG

#	Article	IF	CITATIONS
19	Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nature Communications, 2022, 13, 944.	12.8	27
20	Genetic Regulation of Sinoatrial Node Development and Pacemaker Program in the Venous Pole. Journal of Cardiovascular Development and Disease, 2015, 2, 282-298.	1.6	26
21	<i>Nkx2-5</i> defines a subpopulation of pacemaker cells and is essential for the physiological function of the sinoatrial node in mice. Development (Cambridge), 2019, 146, .	2.5	23
22	Chromosome genome assembly and annotation of the yellowbelly pufferfish with PacBio and Hi-C sequencing data. Scientific Data, 2019, 6, 267.	5.3	21
23	Expression and regulation of the chickenNkx-6.2 homeobox gene suggest its possible involvement in the ventral neural patterning and cell fate specification. , 1999, 216, 459-468.		19
24	Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs. Histochemistry and Cell Biology, 2014, 142, 657-665.	1.7	18
25	Shox2 regulates osteogenic differentiation and pattern formation during hard palate development in mice. Journal of Biological Chemistry, 2019, 294, 18294-18305.	3.4	17
26	Phosphorylation of Shox2 Is Required for Its Function to Control Sinoatrial Node Formation. Journal of the American Heart Association, 2014, 3, e000796.	3.7	16
27	Efficient induction of functional ameloblasts from human keratinocyte stem cells. Stem Cell Research and Therapy, 2018, 9, 126.	5.5	16
28	Bioengineering of a human whole tooth: progress and challenge. Cell Regeneration, 2014, 3, 3:8.	2.6	15
29	Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition. Histochemistry and Cell Biology, 2015, 144, 457-469.	1.7	15
30	A unique stylopod patterning mechanism by <i>Shox2</i> controlled osteogenesis. Development (Cambridge), 2016, 143, 2548-60.	2.5	15
31	Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia. Journal of Investigative Dermatology, 2021, 141, 334-344.	0.7	14
32	Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo. Developmental Dynamics, 2011, 240, 1344-1353.	1.8	13
33	Expression of codon optimized human bone morphogenetic protein 4 in <i>Pichia pastoris</i> . Biotechnology and Applied Biochemistry, 2014, 61, 175-183.	3.1	13
34	Precise chronology of differentiation of developing human primary dentition. Histochemistry and Cell Biology, 2014, 141, 221-227.	1.7	12
35	Effect of Chitosan Magnetic Nanoparticles Loaded with Ang2-siRNA Plasmids on the Growth of Melanoma Xenografts in Nude Mice. Cancer Management and Research, 2020, Volume 12, 7475-7485.	1.9	12
36	Genome-wide analysis of gene expression in human embryonic tooth germ. Journal of Molecular Histology, 2014, 45, 609-617.	2.2	11

YANDING ZHANG

#	Article	IF	CITATIONS
37	Expression patterns of genes critical for SHH, BMP, and FGF pathways during the lumen formation of human salivary glands. Journal of Molecular Histology, 2019, 50, 217-227.	2.2	7
38	Overexpression of Fgf8 in the epidermis inhibits hair follicle development. Experimental Dermatology, 2021, 30, 494-502.	2.9	6
39	Evidence for A1 and A3 receptors mediating adenosine-induced intracellular calcium release in the dorsal root ganglion neurons by using confocal microscopy imaging. Lasers in Medical Science, 2014, 29, 1209-1215.	2.1	5
40	FGF8-mediated signaling regulates tooth developmental pace during odontogenesis. Journal of Genetics and Genomics, 2022, 49, 40-53.	3.9	4
41	Low temperature culture enhances ameloblastic differentiation of human keratinocyte stem cells. Journal of Molecular Histology, 2019, 50, 417-425.	2.2	3
42	Induction of Rhesus Keratinocytes into Functional Ameloblasts by Mouse Embryonic Dental Mesenchyme. Tissue Engineering and Regenerative Medicine, 2018, 15, 173-181.	3.7	2
43	Tissue interactions are indispensable for cavity formation and disc separation in the temporomandibular joint. Connective Tissue Research, 2021, 62, 351-358.	2.3	1
44	PDGFRα-Signaling Is Dispensable for the Development of the Sinoatrial Node After Its Fate Commitment. Frontiers in Cell and Developmental Biology, 2021, 9, 647165.	3.7	1
45	Operation of the Atypical Canonical Bone Morphogenetic Protein Signaling Pathway During Early Human Odontogenesis. Frontiers in Physiology, 2022, 13, 823275.	2.8	1
46	Augmented BMP4 signal impairs tongue myogenesis. Journal of Molecular Histology, 2021, 52, 651-659.	2.2	0