Hiroyoshi Miyakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10419300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging data analysis using non-negative matrix factorization. Neuroscience Research, 2022, 179, 51-56.	1.9	10
2	Frequency-dependent entrainment of spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations by weak AC electric field. Brain Research Bulletin, 2019, 153, 202-213.	3.0	3
3	Automatic Cell Detection from Calcium Imaging Data Using Non-negative Matrix Factorization. Seibutsu Butsuri, 2017, 57, 036-039.	0.1	2
4	Organization of projection neurons and local neurons of the primary auditory center in the fruit fly <i>Drosophila melanogaster</i> . Journal of Comparative Neurology, 2016, 524, 1099-1164.	1.6	61
5	Organization of projection neurons and local neurons of the primary auditory center in the fruit fly <i>Drosophila melanogaster</i> . Journal of Comparative Neurology, 2016, 524, Spc1.	1.6	0
6	Individual differences in sensory responses influence decision making by Drosophila melanogaster larvae on exposure to contradictory cues. Journal of Neurogenetics, 2016, 30, 288-296.	1.4	4
7	Noise-robust recognition of wide-field motion direction and the underlying neural mechanisms in Drosophila melanogaster. Scientific Reports, 2015, 5, 10253.	3.3	5
8	Weak Sinusoidal Electric Fields Entrain Spontaneous Ca Transients in the Dendritic Tufts of CA1 Pyramidal Cells in Rat Hippocampal Slice Preparations. PLoS ONE, 2015, 10, e0122263.	2.5	11
9	A novel behavioral strategy, continuous biased running, during chemotaxis in Drosophila larvae. Neuroscience Letters, 2014, 570, 10-15.	2.1	15
10	Intracellular calcium elevation during plateau potentials mediated by extrasynaptic <scp>NMDA</scp> receptor activation in rat hippocampal <scp>CA</scp> 1 pyramidal neurons is primarily due to calcium entry through voltageâ€gated calcium channels. European Journal of Neuroscience, 2014, 39, 1613-1623.	2.6	5
11	Detecting cells using non-negative matrix factorization on calcium imaging data. Neural Networks, 2014, 55, 11-19.	5.9	120
12	Cooperative Integration and Representation Underlying Bilateral Network of Fly Motion-Sensitive Neurons. PLoS ONE, 2014, 9, e85790.	2.5	1
13	Selectivity and Plasticity in a Sound-Evoked Male-Male Interaction in Drosophila. PLoS ONE, 2013, 8, e74289.	2.5	28
14	Experience-dependent Plasticity of the Optomotor Response in Drosophila melanogaster. Developmental Neuroscience, 2012, 34, 533-542.	2.0	8
15	Low-frequency dielectric dispersion of brain tissue due to electrically long neurites. Physical Review E, 2012, 86, 061911.	2.1	10
16	Higher-Order Spike Triggered Analysis of Neural Oscillators. PLoS ONE, 2012, 7, e50232.	2.5	5
17	Measurement of infinitesimal phase response curves from noisy real neurons. Physical Review E, 2011, 84, 041902.	2.1	17
18	Activation of the VIP/VPAC2 system induces reactive astrocytosis associated with increased expression of glutamate transporters. Brain Research, 2011, 1383, 43-53.	2.2	18

#	Article	IF	CITATIONS
19	Extracellular DC electric fields induce nonuniform membrane polarization in rat hippocampal CA1 pyramidal neurons. Brain Research, 2011, 1383, 22-35.	2.2	28
20	Estimation of Intracellular Calcium Ion Concentration by Nonlinear State Space Modeling and Expectation-Maximization Algorithm for Parameter Estimation. Journal of the Physical Society of Japan, 2010, 79, 124801.	1.6	8
21	An Analytic Solution of the Cable Equation Predicts Frequency Preference of a Passive Shunt-End Cylindrical Cable in Response to Extracellular Oscillating Electric Fields. Biophysical Journal, 2010, 98, 524-533.	0.5	15
22	An analytical solution of the cable equation predicts the frequency preference of a passive non-uniform cylindrical cable in response to extracellular oscillating electrical fields. BMC Neuroscience, 2009, 10, .	1.9	0
23	Steep decrease in the specific membrane resistance in the apical dendrites of hippocampal CA1 pyramidal neurons. Neuroscience Research, 2009, 64, 83-95.	1.9	16
24	Is the Langevin phase equation an efficient model for oscillating neurons?. Journal of Physics: Conference Series, 2009, 197, 012016.	0.4	3
25	A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons. European Journal of Neuroscience, 2008, 28, 521-534.	2.6	24
26	PACAP/PAC1 autocrine system promotes proliferation and astrogenesis in neural progenitor cells. Glia, 2007, 55, 317-327.	4.9	55
27	Paired-pulse ratio of synaptically induced transporter currents at hippocampal CA1 synapses is not related to release probability. Brain Research, 2007, 1154, 71-79.	2.2	28
28	Effects of Bifemelane on the Calcium Level and ATP Release of the Human Origin Astrocyte Clonal Cell. Journal of Pharmacological Sciences, 2006, 102, 121-128.	2.5	3
29	Estimated distribution of specific membrane resistance in hippocampal CA1 pyramidal neuron. Brain Research, 2006, 1125, 199-208.	2.2	18
30	Ca2+-Dependent Induction of Intracellular Ca2+ Oscillation in Hippocampal Astrocytes During Metabotropic Glutamate Receptor Activation. Journal of Pharmacological Sciences, 2005, 97, 212-218.	2.5	14
31	Optical monitoring of progressive synchronization in dentate granule cells during population burst activities. European Journal of Neuroscience, 2005, 21, 3349-3360.	2.6	12
32	Glutamate release increases during mossy-CA3 LTP but not during Schaffer-CA1 LTP. European Journal of Neuroscience, 2004, 19, 1591-1600.	2.6	38
33	Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slicesin vitro. Journal of Physiology, 2004, 557, 175-190.	2.9	629
34	Adenosine A1-receptor-mediated tonic inhibition of glutamate release at rat hippocampal CA3–CA1 synapses is primarily due to inhibition of N-type Ca2+ channels. European Journal of Pharmacology, 2004, 499, 265-274.	3.5	24
35	Novel method for quantification of brain cell swelling in rat hippocampal slices. Journal of Neuroscience Research, 2004, 76, 723-733.	2.9	10
36	NMDA receptor-mediated depolarizing after-potentials in the basal dendrites of CA1 pyramidal neurons. Neuroscience Research, 2004, 48, 325-333.	1.9	16

#	Article	IF	CITATIONS
37	Effects of Mannitol on Ischemia-Induced Degeneration in Rat Hippocampus. Journal of Pharmacological Sciences, 2004, 95, 341-348.	2.5	7
38	Expression of Group I Metabotropic Glutamate Receptors in Rat Hippocampal Cells in Culture and Their Characterization by Intracellular Calcium Ion Dynamics. Journal of Pharmacological Sciences, 2003, 92, 245-251.	2.5	9
39	Optical Bioimaging: From Living Tissue to a Single Molecule: Optical Detection of Synaptically Induced Glutamate Transporter Activity in Hippocampal Slices. Journal of Pharmacological Sciences, 2003, 93, 234-241.	2.5	1
40	Dendritic attenuation of synaptic potentials in the CA1 region of rat hippocampal slices detected with an optical method. European Journal of Neuroscience, 2001, 13, 1711-1721.	2.6	26
41	GABAergic control of synaptic summation in hippocampal CA1 pyramidal neurons. Hippocampus, 2001, 11, 683-689.	1.9	13
42	Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Research, 2001, 891, 106-115.	2.2	105
43	Adverse effects of an active fragment of parathyroid hormone on rat hippocampal organotypic cultures. British Journal of Pharmacology, 2000, 129, 21-28.	5.4	26
44	Optical Detection of Synaptically Induced Glutamate Transport in Hippocampal Slices. Journal of Neuroscience, 1999, 19, 2580-2588.	3.6	97
45	Differential roles of two types of voltage-gated Ca2+ channels in the dendrites of rat cerebellar Purkinje neurons. Brain Research, 1998, 791, 43-55.	2.2	47
46	Activation of dihydropyridine sensitive Ca2+ channels in rat hippocampal neurons in culture by parathyroid hormone. Neuroscience Letters, 1998, 256, 139-142.	2.1	12
47	Properties of Calcium Spikes Revealed During GABAA Receptor Antagonism in Hippocampal CA1 Neurons From Guinea Pigs. Journal of Neurophysiology, 1997, 78, 2269-2279.	1.8	17
48	Recent development of image analysis of intracellular Ca2+ concentration Seibutsu Butsuri, 1996, 36, 30-34.	0.1	0
49	Voltage-gated Ca2+ channel blockers, ï‰-AgalVA and Ni2+, suppress the induction of î,-burst induced long-term potentiation in guinea-pig hippocampal CA1 neurons. Neuroscience Letters, 1995, 183, 112-115.	2.1	49
50	Activation of dopamine D1 receptors enhances long-term depression of synaptic transmission induced by low frequency stimulation in rat hippocampal CA1 neurons. Neuroscience Letters, 1995, 188, 195-198.	2.1	30
51	Adenosine A2 receptor antagonist facilitates the reversal of long-term potentiation (depotentiation) of evoked postsynaptic potentials but inhibits that of population spikes in hippocampal CA1 neurons. Neuroscience Letters, 1992, 148, 148-150.	2.1	16
52	Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron, 1992, 9, 1163-1173.	8.1	254
53	The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature, 1992, 357, 244-246.	27.8	397
54	Adenosine (A2) antagonist inhibits induction of long-term potentiation of evoked synaptic potentials but not of the population spike in hippocampal CA1 neurons. Biochemical and Biophysical Research Communications, 1991, 181, 1010-1014.	2.1	27

#	Article	IF	CITATIONS
55	Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Research, 1991, 555, 112-122.	2.2	333
56	High time resolution fluorescence imaging with a CCD camera. Journal of Neuroscience Methods, 1991, 36, 253-261.	2.5	115
57	Requirement of extracellular Ca2+ after tetanus for induction of long-term potentiation in guinea pig hippocampal slices. Neuroscience Letters, 1987, 77, 176-180.	2.1	31
58	Cytoplasmic calcium elevation in hippocampal granule cell induced by perforant path stimulation andl-glutamate application. Brain Research, 1987, 407, 168-172.	2.2	78