Harry T Orr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10418105/publications.pdf

Version: 2024-02-01

8835 13068 22,192 169 68 145 citations h-index g-index papers 179 179 179 12393 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Autistic-like behavior and cerebellar dysfunction in Bmal1 mutant mice ameliorated by mTORC1 inhibition. Molecular Psychiatry, 2023, 28, 3727-3738.	4.1	16
2	Cholecystokinin Activation of Cholecystokinin 1 Receptors: a Purkinje Cell Neuroprotective Pathway. Cerebellum, 2023, 22, 756-760.	1.4	2
3	Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. Cerebellum, 2022, 21, 452-481.	1.4	15
4	Stephen T. Warren, Ph.D. (1953–2021): A remembrance. American Journal of Human Genetics, 2022, 109, 3-11.	2.6	2
5	Reduction of mutant ATXN1 rescues premature death in a conditional SCA1 mouse model. JCI Insight, 2022, 7, .	2.3	6
6	Cross-species genetic screens identify transglutaminase 5 as a regulator of polyglutamine-expanded ataxin-1. Journal of Clinical Investigation, 2022, 132, .	3.9	6
7	Modulation of ATXN1 S776 phosphorylation reveals the importance of allele-specific targeting in SCA1. JCI Insight, 2021, 6, .	2.3	12
8	Dual targeting of brain regionâ€specific kinases potentiates neurological rescue in Spinocerebellar ataxia type 1. EMBO Journal, 2021, 40, e106106.	3.5	11
9	Cholecystokinin 1 receptor activation restores normal mTORC1 signaling and is protective to Purkinje cells of SCA mice. Cell Reports, 2021, 37, 109831.	2.9	11
10	Antisense Oligonucleotide Therapeutic Approach for Suppression of Ataxin-1 Expression: A Safety Assessment. Molecular Therapy - Nucleic Acids, 2020, 21, 1006-1016.	2.3	16
11	Altered Capicua expression drives regional Purkinje neuron vulnerability through ion channel gene dysregulation in spinocerebellar ataxia type 1. Human Molecular Genetics, 2020, 29, 3249-3265.	1.4	20
12	Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism. Neuropsychopharmacology, 2020, 45, 1159-1170.	2.8	26
13	The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways. Nature Communications, 2020, 11, 3343.	5.8	15
14	Treadmill training increases the motor activity and neuron survival of the cerebellum in a mouse model of spinocerebellar ataxia type 1. Kaohsiung Journal of Medical Sciences, 2019, 35, 679-685.	0.8	11
15	Motor neuron degeneration correlates with respiratory dysfunction in SCA1. DMM Disease Models and Mechanisms, 2018, 11 , .	1.2	23
16	Spinocerebellar Ataxia Type 1: Molecular Mechanisms of Neurodegeneration and Preclinical Studies. Advances in Experimental Medicine and Biology, 2018, 1049, 135-145.	0.8	19
17	ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron, 2018, 97, 1235-1243.e5.	3.8	79
18	Polarization-sensitive optical coherence tomography reveals gray matter and white matter atrophy in SCA1 mouse models. Neurobiology of Disease, 2018, 116, 69-77.	2.1	10

#	Article	IF	Citations
19	Reduction of protein kinase A-mediated phosphorylation of ATXN1-S776 in Purkinje cells delays onset of Ataxia in a SCA1 mouse model. Neurobiology of Disease, 2018, 116, 93-105.	2.1	27
20	PAK1 regulates ATXN1 levels providing an opportunity to modify its toxicity in spinocerebellar ataxia type 1. Human Molecular Genetics, 2018, 27, 2863-2873.	1.4	16
21	Antisense oligonucleotide–mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight, 2018, 3, .	2.3	106
22	Disruption of the ATXN1–CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nature Genetics, 2017, 49, 527-536.	9.4	113
23	Polyglutamine spinocerebellar ataxias — from genes to potential treatments. Nature Reviews Neuroscience, 2017, 18, 613-626.	4.9	270
24	Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Human Molecular Genetics, 2016, 25, ddw337.	1.4	68
25	Visualizing and mapping the cerebellum with serial optical coherence scanner. Neurophotonics, 2016, 4, 1 .	1.7	15
26	Diminishing return for mechanistic therapeutics with neurodegenerative disease duration?. BioEssays, 2016, 38, 977-980.	1.2	22
27	Cerebellar Transcriptome Profiles of ATXN1 Transgenic Mice Reveal SCA1 Disease Progression and Protection Pathways. Neuron, 2016, 89, 1194-1207.	3.8	86
28	Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nature Immunology, 2016, 17, 187-195.	7.0	178
29	Pumilio1 Haploinsufficiency Leads to SCA1-like Neurodegeneration by Increasing Wild-Type Ataxin1 Levels. Cell, 2015, 160, 1087-1098.	13.5	139
30	Animal Models of Spinocerebellar Ataxia Type 1., 2015,, 979-990.		0
31	Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. Journal of Neuroscience, 2015, 35, 11292-11307.	1.7	93
32	Assessing recovery from neurodegeneration in spinocerebellar ataxia 1: Comparison of in vivo magnetic resonance spectroscopy with motor testing, gene expression and histology. Neurobiology of Disease, 2015, 74, 158-166.	2.1	25
33	A native interactor scaffolds and stabilizes toxic ATAXIN-1 oligomers in SCA1. ELife, 2015, 4, .	2.8	29
34	Ataxin-1 oligomers induce local spread of pathology and decreasing them by passive immunization slows Spinocerebellar ataxia type 1 phenotypes. ELife, 2015, 4, .	2.8	16
35	Purkinje Cell Ataxin-1 Modulates Climbing Fiber Synaptic Input in Developing and Adult Mouse Cerebellum. Journal of Neuroscience, 2013, 33, 5806-5820.	1.7	50
36	The Unstable Repeatsâ€"Three Evolving Faces of Neurological Disease. Neuron, 2013, 77, 825-843.	3.8	192

#	Article	IF	Citations
37	RAS–MAPK–MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature, 2013, 498, 325-331.	13.7	119
38	Polyglutamine Disease Toxicity Is Regulated by Nemo-like Kinase in Spinocerebellar Ataxia Type 1. Journal of Neuroscience, 2013, 33, 9328-9336.	1.7	30
39	Toxic RNA as a driver of disease in a common form of ALS and dementia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7533-7534.	3.3	8
40	Regulation of Ataxin-1 Phosphorylation and Its Impact on Biology. Methods in Molecular Biology, 2013, 1010, 201-209.	0.4	10
41	Cell biology of spinocerebellar ataxia. Journal of Cell Biology, 2012, 197, 167-177.	2.3	144
42	Genetically engineered mouse models of the trinucleotide-repeat spinocerebellar ataxias. Brain Research Bulletin, 2012, 88, 33-42.	1.4	21
43	Polyglutamine neurodegeneration: expanded glutamines enhance native functions. Current Opinion in Genetics and Development, 2012, 22, 251-255.	1.5	69
44	SCA1â€"Phosphorylation, a regulator of Ataxin-1 function and pathogenesis. Progress in Neurobiology, 2012, 99, 179-185.	2.8	33
45	ATXN1 Protein Family and CIC Regulate Extracellular Matrix Remodeling and Lung Alveolarization. Developmental Cell, 2011, 21, 746-757.	3.1	89
46	Are Polyglutamine Diseases Expanding?. Neuron, 2011, 70, 377-378.	3.8	3
47	FTD and ALS: Genetic Ties that Bind. Neuron, 2011, 72, 189-190.	3.8	28
48	In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Experimental Neurology, 2011, 232, 290-298.	2.0	29
49	Exercise and Genetic Rescue of SCA1 via the Transcriptional Repressor Capicua. Science, 2011, 334, 690-693.	6.0	144
50	14-3-3 Binding to Ataxin-1(ATXN1) Regulates Its Dephosphorylation at Ser-776 and Transport to the Nucleus. Journal of Biological Chemistry, 2011, 286, 34606-34616.	1.6	49
51	Regional rescue of spinocerebellar ataxia type 1 phenotypes by $\langle i \rangle 14-3-3 \langle i \rangle \hat{l} \mu$ haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2142-2147.	3.3	65
52	Aminopyridines Correct Early Dysfunction and Delay Neurodegeneration in a Mouse Model of Spinocerebellar Ataxia Type 1. Journal of Neuroscience, 2011, 31, 11795-11807.	1.7	137
53	Abnormalities in the Climbing Fiber-Purkinje Cell Circuitry Contribute to Neuronal Dysfunction in <i>ATXN1</i> [<i>82Q</i>] Mice. Journal of Neuroscience, 2011, 31, 12778-12789.	1.7	75
54	Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model. Human Molecular Genetics, 2011, 20, 2204-2212.	1.4	58

#	Article	IF	CITATIONS
55	Nuclear Ataxias. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000786-a000786.	2.3	8
56	Noninvasive Detection of Presymptomatic and Progressive Neurodegeneration in a Mouse Model of Spinocerebellar Ataxia Type 1. Journal of Neuroscience, 2010, 30, 3831-3838.	1.7	85
57	Partial Loss of Ataxin-1 Function Contributes to Transcriptional Dysregulation in Spinocerebellar Ataxia Type 1 Pathogenesis. PLoS Genetics, 2010, 6, e1001021.	1.5	113
58	SCA1-like Disease in Mice Expressing Wild-Type Ataxin-1 with a Serine to Aspartic Acid Replacement at Residue 776. Neuron, 2010, 67, 929-935.	3.8	137
59	Unstable Nucleotide Repeat Minireview Series: A Molecular Biography of Unstable Repeat Disorders. Journal of Biological Chemistry, 2009, 284, 7405.	1.6	7
60	Pathogenic Mechanisms of a Polyglutamine-mediated Neurodegenerative Disease, Spinocerebellar Ataxia Type 1. Journal of Biological Chemistry, 2009, 284, 7425-7429.	1.6	206
61	Phosphorylation of ATXN1 at Ser776 in the cerebellum. Journal of Neurochemistry, 2009, 110, 675-686.	2.1	55
62	Emerging pathogenic pathways in the spinocerebellar ataxias. Current Opinion in Genetics and Development, 2009, 19, 247-253.	1.5	77
63	Characterization of the Zebrafishatxn1/axhGene Family. Journal of Neurogenetics, 2009, 23, 313-323.	0.6	18
64	Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature, 2008, 452, 713-718.	13.7	287
65	miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nature Neuroscience, 2008, 11, 1137-1139.	7.1	194
66	The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1291-1296.	3.3	85
67	Antisense RNA Sequences Modulating the Ataxin-1 Message: Molecular Model of Gene Therapy for Spinocerebellar Ataxia Type 1, a Dominant-Acting Unstable Trinucleotide Repeat Disease. Cell Transplantation, 2008, 17, 723-734.	1.2	7
68	Lithium Therapy Improves Neurological Function and Hippocampal Dendritic Arborization in a Spinocerebellar Ataxia Type 1 Mouse Model. PLoS Medicine, 2007, 4, e182.	3.9	147
69	Trinucleotide Repeat Disorders. Annual Review of Neuroscience, 2007, 30, 575-621.	5.0	1,289
70	Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nature Genetics, 2007, 39, 373-379.	9.4	75
71	Hsp70/Hsc70 regulates the effect phosphorylation has on stabilizing ataxin-1. Journal of Neurochemistry, 2007, 102, 2040-2048.	2.1	12
72	Spinocerebellar Ataxia Type 1., 2007, , 149-155.		0

#	Article	IF	CITATIONS
73	RORα-Mediated Purkinje Cell Development Determines Disease Severity in Adult SCA1 Mice. Cell, 2006, 127, 697-708.	13.5	210
74	ATAXIN-1 Interacts with the Repressor Capicua in Its Native Complex to Cause SCA1 Neuropathology. Cell, 2006, 127, 1335-1347.	13.5	284
75	Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes and Development, 2006, 20, 2183-2192.	2.7	129
76	Targeted Deletion of a Single Sca8 Ataxia Locus Allele in Mice Causes Abnormal Gait, Progressive Loss of Motor Coordination, and Purkinje Cell Dendritic Deficits. Journal of Neuroscience, 2006, 26, 9975-9982.	1.7	70
77	Phosphorylation of Ataxin-1: A Link Between Basic Research and Clinical Application in Spinocerebellar Ataxia Type 1., 2006, , 339-349.		0
78	Spinocerebellar Ataxia Type 1. Contemporary Clinical Neuroscience, 2006, , 87-99.	0.3	0
79	Identification of a novel phosphorylation site in ataxin-1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 11-18.	1.9	15
80	Animal Models of Spinocerebellar Ataxia Type 1 (SCA1)., 2005, , 623-630.		0
81	A cell-based screen for modulators of ataxin-1 phosphorylation. Human Molecular Genetics, 2005, 14, 1095-1105.	1.4	27
82	SUMOylation of the Polyglutamine Repeat Protein, Ataxin-1, Is Dependent on a Functional Nuclear Localization Signal. Journal of Biological Chemistry, 2005, 280, 21942-21948.	1.6	87
83	RNA association and nucleocytoplasmic shuttling by ataxin-1. Journal of Cell Science, 2005, 118, 233-242.	1.2	109
84	The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins. Cell, 2005, 122, 633-644.	13.5	189
85	Generation and Characterization of LANP/pp32 Null Mice. Molecular and Cellular Biology, 2004, 24, 3140-3149.	1.1	38
86	Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Human Molecular Genetics, 2004, 13, 2535-2543.	1.4	168
87	The Effects of the Polyglutamine Repeat Protein Ataxin-1 on the UbL-UBA Protein A1Up. Journal of Biological Chemistry, 2004, 279, 42290-42301.	1.6	44
88	Recovery from Polyglutamine-Induced Neurodegeneration in Conditional SCA1 Transgenic Mice. Journal of Neuroscience, 2004, 24, 8853-8861.	1.7	257
89	RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Medicine, 2004, 10, 816-820.	15.2	643
90	Neuron protection agency. Nature, 2004, 431, 747-748.	13.7	30

#	Article	IF	Citations
91	RNA gains a new function: a mediator of neurodegeneration. Trends in Neurosciences, 2004, 27, 233-234.	4.2	9
92	Overexpression of CREB reduces CRE-mediated transcription: behavioral and cellular analyses in transgenic mice. Molecular and Cellular Neurosciences, 2004, 25, 602-611.	1.0	12
93	Into the depths of ataxia. Journal of Clinical Investigation, 2004, 113, 505-507.	3.9	5
94	Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1. Cell, 2003, 113, 457-468.	13.5	402
95	Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice. Neuron, 2003, 38, 375-387.	3.8	303
96	Mapmodulin/Leucine-rich Acidic Nuclear Protein Binds the Light Chain of Microtubule-associated Protein 1B and Modulates Neuritogenesis. Journal of Biological Chemistry, 2003, 278, 34691-34699.	1.6	62
97	Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Human Molecular Genetics, 2003, 12, 2789-2795.	1.4	54
98	Spinocerebellar Ataxia 1 (SCA1)., 2003,, 35-43.		0
99	Microarrays and polyglutamine disorders: reports from the Hereditary Disease Array Group. Human Molecular Genetics, 2002, 11, 1909-1910.	1.4	15
100	A Long CAG Repeat in the Mouse Sca1 Locus Replicates SCA1 Features and Reveals the Impact of Protein Solubility on Selective Neurodegeneration. Neuron, 2002, 34, 905-919.	3.8	320
101	Lurcher, nPIST, and Autophagy. Neuron, 2002, 35, 813-814.	3.8	8
102	The GSK3 \hat{I}^2 signaling cascade and neurodegenerative disease. Current Opinion in Neurobiology, 2002, 12, 275-278.	2.0	188
103	Amino Acids in a Region of Ataxin-1 Outside of the Polyglutamine Tract Influence the Course of Disease in SCA1 Transgenic Mice. NeuroMolecular Medicine, 2002, 1, 33-42.	1.8	22
104	Reduction of Purkinje Cell Pathology in SCA1 Transgenic Mice by p53 Deletion. Neurobiology of Disease, 2001, 8, 974-981.	2.1	39
105	Altered Trafficking of Membrane Proteins in Purkinje Cells of SCA1 Transgenic Mice. American Journal of Pathology, 2001, 159, 905-913.	1.9	83
106	Qs in the Nucleus. Neuron, 2001, 31, 875-876.	3.8	9
107	RNA Targets of the Fragile X Protein. Cell, 2001, 107, 555-557.	13.5	30
108	Calcium Dynamics and Electrophysiological Properties of Cerebellar Purkinje Cells in SCA1 Transgenic Mice. Journal of Neurophysiology, 2001, 85, 1750-1760.	0.9	57

#	Article	IF	CITATIONS
109	Spinocerebellar ataxia type 1., 2001, , 409-418.		O
110	Spinocerebellar Ataxia Type 1—Modeling the Pathogenesis of a Polyglutamine Neurodegenerative Disorder in Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2000, 59, 265-270.	0.9	49
111	Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nature Neuroscience, 2000, 3, 157-163.	7.1	341
112	Identification of genes that modify ataxin-1-induced neurodegeneration. Nature, 2000, 408, 101-106.	13.7	648
113	The Ins and Outs of a Polyglutamine Neurodegenerative Disease: Spinocerebellar Ataxia Type 1 (SCA1). Neurobiology of Disease, 2000, 7, 129-134.	2.1	22
114	Reversing Neurodegeneration: A Promise Unfolds. Cell, 2000, 101, 1-4.	13.5	81
115	Glutamine Repeats and Neurodegeneration. Annual Review of Neuroscience, 2000, 23, 217-247.	5.0	1,243
116	Polyglutamine diseases: protein cleavage and aggregation. Current Opinion in Neurobiology, 1999, 9, 566-570.	2.0	102
117	Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice. Neuron, 1999, 24, 879-892.	3.8	482
118	Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1079-1081.	1.8	66
119	Pathogenesis of Polyglutamine-Induced Disease: A Model for SCA1. Molecular Genetics and Metabolism, 1999, 66, 172-178.	0.5	10
120	Transgenic Mouse Models of CAG Trinucleotide Repeat Neurologic Diseases., 1999,, 163-185.		0
121	Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genetics, 1998, 19, 148-154.	9.4	802
122	Ataxin-1 Nuclear Localization and Aggregation. Cell, 1998, 95, 41-53.	13.5	965
123	The Transcription Factor E2F-1 in SV40 T Antigen-Induced Cerebellar Purkinje Cell Degeneration. Molecular and Cellular Neurosciences, 1998, 12, 16-28.	1.0	27
124	Mice Lacking Ataxin-1 Display Learning Deficits and Decreased Hippocampal Paired-Pulse Facilitation. Journal of Neuroscience, 1998, 18, 5508-5516.	1.7	197
125	Increased Trinucleotide Repeat Instability with Advanced Maternal Age. Human Molecular Genetics, 1997, 6, 2135-2139.	1.4	97
126	Susceptibility to Cell Death Induced by Mutant SV40 T-Antigen Correlates with Purkinje Neuron Functional Development. Molecular and Cellular Neurosciences, 1997, 9, 42-62.	1.0	24

#	Article	IF	Citations
127	Cytotoxic T Lymphocyte Recognition of HLA-G in Mice. Human Immunology, 1997, 55, 127-139.	1.2	20
128	Purkinje Cell Expression of a Mutant Allele of <i>SCA1 < /i>in Transgenic Mice Leads to Disparate Effects on Motor Behaviors, Followed by a Progressive Cerebellar Dysfunction and Histological Alterations. Journal of Neuroscience, 1997, 17, 7385-7395.</i>	1.7	261
129	Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature, 1997, 389, 971-974.	13.7	531
130	The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature, 1997, 389, 974-978.	13.7	246
131	Mouse Models of Human CAG Repeat Disorders. Brain Pathology, 1997, 7, 965-977.	2.1	20
132	Cloning and Developmental Expression Analysis of the Murine Homolog of the Spinocerebellar Ataxia Type 1 Gene (Sea1). Human Molecular Genetics, 1996, 5, 33-40.	1.4	59
133	Expression analysis of the ataxin–1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genetics, 1995, 10, 94-98.	9.4	291
134	Gametic and somatic tissue–specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nature Genetics, 1995, 10, 344-350.	9.4	179
135	HLA-G Transgenic Mice: A Model for Studying Expression and Function at the Maternal/Fetal Interface. Immunological Reviews, 1995, 147, 53-65.	2.8	29
136	Spinocerebellar ataxia type 1. Seminars in Cell Biology, 1995, 6, 29-35.	3.5	125
137	SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell, 1995, 82, 937-948.	13.5	567
138	In Vivo Viability of Postmitotic Purkinje Neurons Requires pRb Family Member Function. Molecular and Cellular Neurosciences, 1995, 6, 153-167.	1.0	70
139	Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genetics, 1994, 7, 513-520.	9.4	362
140	Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nature Genetics, 1994, 8, 280-284.	9.4	334
141	Unstable trinucleotide repeats and the diagnosis of neurodegenerative disease. Human Pathology, 1994, 25, 598-601.	1.1	11
142	Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genetics, 1993, 4, 221-226.	9.4	1,673
143	Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genetics, 1993, 5, 254-258.	9.4	489
144	Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron, 1992, 9, 955-966.	3.8	201

#	Article	IF	CITATIONS
145	HLA and maternalâ€fetal recognition. FASEB Journal, 1992, 6, 2344-2348.	0.2	151
146	Molecular and endocrine characterization of a mutation involving a recombination between the steroid 21-hydroxylase functional gene and pseudogene. Journal of Steroid Biochemistry and Molecular Biology, 1991, 38, 677-686.	1.2	19
147	Linkage of an Alzheimer disease susceptibility locus to markers on human chromosome 21. American Journal of Medical Genetics Part A, 1991, 40, 449-453.	2.4	21
148	Protocol for genetic testing in Huntington disease: Three years of experience in Minnesota. American Journal of Medical Genetics Part A, 1991, 40, 518-522.	2.4	21
149	HLA non-A,B,C class I genes: Their structure and expression. Immunologic Research, 1990, 9, 265-274.	1.3	63
150	Sequence of a murine cDNA, pcp-4, that encodes the homolog of the rat brain-specific antigen PEP-19. Nucleic Acids Research, 1990, 18, 1304-1304.	6. 5	10
151	Differential expression of HLA-E, HLA-F, and HLA-G transcripts in human tissue. Human Immunology, 1990, 29, 131-142.	1.2	219
152	HLA Class I Gene Family: Characterization of Genes Encoding Non-HLA-A,B,C Proteins., 1989,, 33-40.		10
153	Transfer and Expression of Human Non-A,B,C Class I Genes in Human HLA A,B,C Null Lymphoblastoid Cells. , 1989, , 159-161.		1
154	Diagnosis of classical steroid 21-hydroxylase deficiency using an HLA-B locus-specific DNA-probe. American Journal of Medical Genetics Part A, 1988, 29, 703-712.	2.4	16
155	Molecular analysis of the variant alloantigen HLA-B27d (HLA-Bâ^—2703) identifies a unique single amino acid substitution. Human Immunology, 1988, 21, 209-219.	1.2	53
156	Organization of the human class I major histocompatibility complex genes. Immunologic Research, 1987, 6, 1-10.	1.3	58
157	Use of DNA probes from the 5′ flanking region of the HLA-B gene to examine polymorphism at the HLA-B locus. Human Immunology, 1986, 16, 137-147.	1.2	16
158	Class I-like HLA genes map telomeric to the HLA-A2 locus in human cells. Nature, 1983, 302, 534-536.	13.7	68
159	Mapping of class I DNA sequences within the human major histocompatibility complex. Immunogenetics, 1983, 18, 489-502.	1.2	49
160	Use of HLA loss mutants to analyse the structure of the human major histocompatibility complex. Nature, 1982, 296, 454-456.	13.7	84
161	The Major Histocompatibility Complex: Analysis at the Protein and DNA Levels. , 1982, , 1-51.		5
162	Major histocompatibility antigens: The human (HLA-A,-B,-C) and murine (H-2K, H-2D) class I molecules. Cell, 1981, 24, 287-299.	13.5	517

#	Article	IF	CITATIONS
163	Complete Primary Structure of Human Histocompatibility Antigen HLA-B7. , 1981, , 479-493.		1
164	Chapter 4 Complete Primary Structure of Human Histocompatibility Antigen Hla-B7: Evolutionary and Functional Implications. Current Topics in Developmental Biology, 1980, 14, 97-113.	1.0	3
165	The heavy chain of human histocompatibility antigen HLA-B7 contains an immunoglobulin-like region. Nature, 1979, 282, 266-270.	13.7	134
166	Complete amino acid sequence of a papain-solubilized human histocompatibility antigen, HLA-B7. 2. Sequence determination and search for homologies. Biochemistry, 1979, 18, 5711-5720.	1.2	127
167	Complete amino acid sequence of a papain-solubilized human histocompatibility antigen, HLA-B7. 1. Isolation and amino acid composition of fragments and of tryptic and chymotryptic peptides. Biochemistry, 1979, 18, 5704-5711.	1.2	36
168	Assembly and maturation of HLA-A and HLA-B antigens in vivo. Cell, 1979, 18, 979-991.	13.5	286
169	Cholecystokinin 1 Receptor (Cck1R) Activates mTORC1 Signaling and is Protective to Purkinje Cells in SCA Mice. SSRN Electronic Journal, 0 , , .	0.4	0