


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1041744/publications.pdf Version: 2024-02-01



Προ Εριέ ΑΫ

| #  | Article                                                                                                                                                                                                                                                                                                                   | IF               | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 1  | Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights,<br>Antarctica (77.8°S, 166.7°E) during the 2019<br>Antarctic stratospheric sudden warming. Tellus, Series B: Chemical and Physical Meteorology, 2022,<br>73, 1933783.                                                        | 1.6              | 3                   |
| 2  | Enhancing MAX-DOAS atmospheric state retrievals by multispectral polarimetry – studies using synthetic data. Atmospheric Measurement Techniques, 2022, 15, 2077-2098.                                                                                                                                                     | 3.1              | 2                   |
| 3  | Ground-based validation of the MetOp-A and MetOp-B GOME-2 OClO measurements. Atmospheric<br>Measurement Techniques, 2022, 15, 3439-3463.                                                                                                                                                                                  | 3.1              | Ο                   |
| 4  | Time-dependent 3D simulations of tropospheric ozone depletion events in the Arctic spring using the<br>Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Atmospheric Chemistry<br>and Physics, 2021, 21, 7611-7638.                                                                               | 4.9              | 13                  |
| 5  | Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign. Atmospheric Measurement Techniques, 2021, 14, 1-35.                                                                                                                                                   | 3.1              | 32                  |
| 6  | Retrieval algorithm for OClO from TROPOMI (TROPOspheric Monitoring Instrument) by differential optical absorption spectroscopy. Atmospheric Measurement Techniques, 2021, 14, 7595-7625.                                                                                                                                  | 3.1              | 2                   |
| 7  | Validation of MAX-DOAS retrievals of aerosol extinction, SO <sub>2</sub> ,<br>and NO <sub>2</sub> through comparison with lidar, sun photometer,<br>active DOAS, and aircraft measurements in the Athabasca oil sands region. Atmospheric Measurement<br>Techniques, 2020, 13, 1129-1155.                                 | 3.1              | 4                   |
| 8  | Evaluating different methods for elevation calibration of MAX-DOAS (Multi AXis Differential Optical) Tj ETQq0 0<br>Techniques, 2020, 13, 685-712.                                                                                                                                                                         | 0 rgBT /0<br>3.1 | verlock 10 Tf<br>11 |
| 9  | Intercomparison of NO <sub>2</sub> ,<br>O <sub>4</sub> , O <sub>3</sub> and HCHO slant<br>column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2.<br>Atmospheric Measurement Techniques. 2020. 13. 2169-2208.                                                                             | 3.1              | 52                  |
| 10 | Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign. Atmospheric Measurement Techniques, 2020, 13, 5087-5116.                                                                                                                         | 3.1              | 18                  |
| 11 | Validation of tropospheric NO <sub>2</sub> column measurements of<br>GOME-2A and OMI using MAX-DOAS and direct sun network observations. Atmospheric Measurement<br>Techniques, 2020, 13, 6141-6174.                                                                                                                      | 3.1              | 31                  |
| 12 | Recent improvements of long-path DOAS measurements: impact on accuracy and stability of short-term and automated long-term observations. Atmospheric Measurement Techniques, 2019, 12, 4149-4169.                                                                                                                         | 3.1              | 7                   |
| 13 | Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies using synthetic data.<br>Atmospheric Measurement Techniques, 2019, 12, 2155-2181.                                                                                                                                                              | 3.1              | 34                  |
| 14 | Is a scaling factor required to obtain closure between measured and modelled atmospheric<br>O <sub>4</sub> absorptions? An assessment of uncertainties of<br>measurements and radiative transfer simulations for 2 selected days during the MAD-CAT campaign.<br>Atmospheric Measurement Techniques, 2019, 12, 2745-2817. | 3.1              | 22                  |
| 15 | Detection of O <sub>4</sub> absorption around 328 and 419†nm in measured atmospheric absorption spectra. Atmospheric Chemistry and Physics, 2018, 18, 1671-1683.                                                                                                                                                          | 4.9              | 7                   |
| 16 | Springtime Bromine Activation over Coastal and Inland Arctic Snowpacks. ACS Earth and Space Chemistry, 2018, 2, 1075-1086.                                                                                                                                                                                                | 2.7              | 22                  |
| 17 | Daytime HONO, NO <sub>2</sub> and aerosol distributions from MAX-DOAS observations in Melbourne. Atmospheric Chemistry and Physics, 2018, 18, 13969-13985.                                                                                                                                                                | 4.9              | 34                  |
| 18 | Observations of bromine monoxide transport in the Arctic sustained on aerosol particles.<br>Atmospheric Chemistry and Physics, 2017, 17, 7567-7579.                                                                                                                                                                       | 4.9              | 44                  |

Udo Frieß

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Horizontal and vertical structure of reactive bromine events probed by bromine monoxide MAX-DOAS.<br>Atmospheric Chemistry and Physics, 2017, 17, 9291-9309.                                             | 4.9 | 27        |
| 20 | Detection of water vapour absorption around 363 nm in measured atmospheric absorption spectra and its effect on DOAS evaluations. Atmospheric Chemistry and Physics, 2017, 17, 1271-1295.                | 4.9 | 36        |
| 21 | MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain. Atmospheric Measurement<br>Techniques, 2016, 9, 5089-5101.                                                                         | 3.1 | 30        |
| 22 | Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements. Atmospheric<br>Measurement Techniques, 2016, 9, 3205-3222.                                                          | 3.1 | 53        |
| 23 | Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source.<br>Atmospheric Chemistry and Physics, 2016, 16, 12219-12237.                                                     | 4.9 | 22        |
| 24 | The role of open lead interactions in atmospheric ozone variability between Arctic coastal and inland sites. Elementa, 2016, 4, .                                                                        | 3.2 | 6         |
| 25 | Dependence of the vertical distribution of bromine monoxide in the lower troposphere on meteorological factors such as wind speed and stability. Atmospheric Chemistry and Physics, 2015, 15, 2119-2137. | 4.9 | 41        |
| 26 | Vertical distribution of BrO in the boundary layer at the Dead Sea. Environmental Chemistry, 2015, 12, 438.                                                                                              | 1.5 | 16        |
| 27 | The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases.<br>Atmospheric Measurement Techniques, 2015, 8, 3767-3787.                                            | 3.1 | 27        |
| 28 | On the relative absorption strengths of water vapour in the blue wavelength range. Atmospheric<br>Measurement Techniques, 2015, 8, 4329-4346.                                                            | 3.1 | 30        |
| 29 | Cloud detection and classification based on MAX-DOAS observations. Atmospheric Measurement<br>Techniques, 2014, 7, 1289-1320.                                                                            | 3.1 | 63        |
| 30 | The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) – a novel imaging DOAS device for 2-D and<br>3-D imaging of trace gases and aerosols. Atmospheric Measurement Techniques, 2014, 7, 3459-3485.    | 3.1 | 33        |
| 31 | Glyoxal observations in the global marine boundary layer. Journal of Geophysical Research D:<br>Atmospheres, 2014, 119, 6160-6169.                                                                       | 3.3 | 38        |
| 32 | CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud.<br>Atmospheric Chemistry and Physics, 2014, 14, 6621-6642.                                                       | 4.9 | 8         |
| 33 | MAX-DOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement. Atmospheric Measurement Techniques, 2013, 6, 167-185.                                            | 3.1 | 78        |
| 34 | lodine monoxide in the Western Pacific marine boundary layer. Atmospheric Chemistry and Physics, 2013, 13, 3363-3378.                                                                                    | 4.9 | 66        |
| 35 | Atmospheric mercury over sea ice during the OASIS-2009 campaign. Atmospheric Chemistry and Physics, 2013, 13, 7007-7021.                                                                                 | 4.9 | 42        |
| 36 | Ozone dynamics and snowâ€atmosphere exchanges during ozone depletion events at Barrow, Alaska.<br>Journal of Geophysical Research, 2012, 117, .                                                          | 3.3 | 52        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of<br>Jacobians and 3D features. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112,<br>1119-1137. | 2.3 | 174       |