
Judy Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10417282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. Journal of Theoretical Biology, 2006, 242, 220-236.	1.7	238
2	A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. Journal of Theoretical Biology, 2006, 242, 237-256.	1.7	148
3	Modeling the immune rheostat of macrophages in the lung in response to infection. Proceedings of the United States of America, 2009, 106, 11246-11251.	7.1	131
4	IN SILICO MODELS OF ACUTE INFLAMMATION IN ANIMALS. Shock, 2006, 26, 235-244.	2.1	98
5	In Silico and In Vivo Approach to Elucidate the Inflammatory Complexity of CD14-deficient Mice. Molecular Medicine, 2006, 12, 88-96.	4.4	82
6	Insights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation. Antioxidants and Redox Signaling, 2015, 23, 1370-1387.	5.4	82
7	Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences and Engineering, 2010, 7, 739-763.	1.9	41
8	Toward a model-free feedback control synthesis for treating acute inflammation. Journal of Theoretical Biology, 2018, 448, 26-37.	1.7	39
9	Modeling the host response to inhalation anthrax. Journal of Theoretical Biology, 2011, 276, 199-208.	1.7	21
10	Tuberculosis research: Going forward with a powerful "Translational Systems Biology―approach. Tuberculosis, 2010, 90, 7-8.	1.9	14
11	Comparing intervention strategies for reducing Clostridioides difficile transmission in acute healthcare settings: an agent-based modeling study. BMC Infectious Diseases, 2020, 20, 799.	2.9	13
12	OPTIMAL CONTROL APPLIED IN AN ANTHRAX EPIZOOTIC MODEL. Journal of Biological Systems, 2016, 24, 495-517.	1.4	11
13	Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission. Journal of Mathematical Biology, 2017, 75, 1693-1713.	1.9	10
14	Nonlinear state estimation for complex immune responses. , 2013, , .		8
15	Model-free immune therapy: A control approach to acute inflammation. , 2016, , .		7
16	Modeling the macrophage-anthrax spore interaction: Implications for early host-pathogen interactions. Mathematical Biosciences, 2018, 305, 18-28.	1.9	7
17	Competition Between Transients in the Rate of Approach to a Fixed Point. SIAM Journal on Applied Dynamical Systems, 2009, 8, 1523-1563.	1.6	6
18	Precision Systems Medicine: A Control Discovery Problem. , 2021, , 318-330.		6

#	Article	IF	CITATIONS
19	Optimal control of an inflammatory immune response model. , 2015, , .		4
20	Immune therapy using optimal control with L1 type objective. , 2016, , .		3
21	Mathematically modeling the effect of touch frequency on the environmental transmission of Clostridioides difficile in healthcare settings. Mathematical Biosciences, 2021, 340, 108666.	1.9	1