Je E Hirsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1041053/publications.pdf

Version: 2024-02-01

20759 6630 25,868 257 60 156 citations h-index g-index papers 269 269 269 14100 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comment on "Room-temperature superconductivity in a carbonaceous sulfur hydride―by Elliot Snider et al Europhysics Letters, 2022, 137, 36001.	0.7	11
2	Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure. National Science Review, 2022, 9, .	4.6	11
3	Incompatibility of published ac magnetic susceptibility of a room temperature superconductor with measured raw data. Matter and Radiation at Extremes, 2022, 7, .	1.5	8
4	Granular Superconductivity in Hydrides Under Pressure. Journal of Superconductivity and Novel Magnetism, 2022, 35, 2731-2736.	0.8	1
5	Clear evidence against superconductivity in hydrides under high pressure. Matter and Radiation at Extremes, 2022, 7, .	1.5	14
6	Nonstandard superconductivity or no superconductivity in hydrides under high pressure. Physical Review B, 2021, 103, .	1.1	53
7	Unusual width of the superconducting transition in a hydride. Nature, 2021, 596, E9-E10.	13.7	37
8	Hole superconductivity xOr hot hydride superconductivity. Journal of Applied Physics, 2021, 130, .	1.1	12
9	Superconducting Materials: the Whole Story. Journal of Superconductivity and Novel Magnetism, 2020, 33, 61-68.	0.8	9
10	Reply to the Comment by Jacob Szeftel et al Europhysics Letters, 2020, 131, 17004.	0.7	0
11	Reply to the Comment by Denis M. Basko and Robert S. Whitney. Europhysics Letters, 2020, 131, 47003.	0.7	0
12	Thermodynamic inconsistency of the conventional theory of superconductivity. International Journal of Modern Physics B, 2020, 34, 2050175.	1.0	7
13	Inconsistency of the conventional theory of superconductivity. Europhysics Letters, 2020, 130, 17006.	0.7	19
14	How Alfven's theorem explains the Meissner effect. Modern Physics Letters B, 2020, 34, 2050300.	1.0	3
15	Defying Inertia: How Rotating Superconductors Generate Magnetic Fields. Annalen Der Physik, 2019, 531, 1900212.	0.9	5
16	Alfven-like waves along normal-superconductor phase boundaries. Physica C: Superconductivity and Its Applications, 2019, 564, 42-48.	0.6	3
17	Hole superconductivity in infinite-layer nickelates. Physica C: Superconductivity and Its Applications, 2019, 566, 1353534.	0.6	34
18	Understanding electron-doped cuprate superconductors as hole superconductors. Physica C: Superconductivity and Its Applications, 2019, 564, 29-37.	0.6	12

#	Article	lF	CITATIONS
19	Response to comment "hα: the scientist as chimpanzee or bonoboâ€; by Leydesdorff, Bornmann and Opthof. Scientometrics, 2019, 118, 1167-1172.	1.6	5
20	hα: An index to quantify an individual's scientific leadership. Scientometrics, 2019, 118, 673-686.	1.6	53
21	Moment of inertia of superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 83-90.	0.9	7
22	Entropy generation and momentum transfer in the superconductor–normal and normal–superconductor phase transformations and the consistency of the conventional theory of superconductivity. International Journal of Modern Physics B, 2018, 32, 1850158.	1.0	13
23	Enhancement of superconducting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi> due to the spin-orbit interaction. Physical Review B, 2018, 97, .</mml:msub></mml:math>	k/mml:msi	ub8
24	Erratum to "Dynamics of the normal-superconductor phase transition and the puzzle of the Meissner effect―[Ann. Physics 362 (2015) 1–23]. Annals of Physics, 2017, 376, 505-506.	1.0	0
25	Momentum of superconducting electrons and the explanation of the Meissner effect. Physical Review B, 2017, 95, .	1.1	27
26	Why only hole conductors can be superconductors. Proceedings of SPIE, 2017, , .	0.8	4
27	Towards an Understanding of Hole Superconductivity. Springer Series in Materials Science, 2017, , 99-115.	0.4	3
28	Proposed experimental test of the theory of hole superconductivity. Physica C: Superconductivity and Its Applications, 2016, 525-526, 44-47.	0.6	2
29	On the reversibility of the Meissner effect and the angular momentum puzzle. Annals of Physics, 2016, 373, 230-244.	1.0	13
30	The disappearing momentum of the supercurrent in the superconductor-to-normal phase transformation. Europhysics Letters, 2016, 114, 57001.	0.7	15
31	On the dynamics of the Meissner effect. Physica Scripta, 2016, 91, 035801.	1.2	13
32	The Bohr superconductor. Europhysics Letters, 2016, 113, 37001.	0.7	11
33	Superconducting materials classes: Introduction and overview. Physica C: Superconductivity and Its Applications, 2015, 514, 1-8.	0.6	54
34	Hole superconductivity in <mml:math altimg="si11.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow> and other sulfides under high pressure. Physica C: Superconductivity and Its Applications, 2015, 511,</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	พ> ๏.๓ ml:ท	nn #2
35	45-49. Absence of Josephson coupling between certain superconductors. Europhysics Letters, 2015, 109, 67005.	0.7	1
36	Superconductivity in the elements, alloys and simple compounds. Physica C: Superconductivity and Its Applications, 2015, 514, 17-27.	0.6	68

#	Article	IF	CITATIONS
37	Dynamics of the normal–superconductor phase transition and the puzzle of the Meissner effect. Annals of Physics, 2015, 362, 1-23.	1.0	13
38	Proposed experimental test of an alternative electrodynamic theory of superconductors. Physica C: Superconductivity and Its Applications, 2015, 508, 21-24.	0.6	4
39	Superconductivity, diamagnetism, and the mean inner potential of solids. Annalen Der Physik, 2014, 526, 63-78.	0.9	8
40	The meaning of the h-index. International Journal of Clinical and Health Psychology, 2014, 14, 161-164.	2.7	93
41	The London moment: what a rotating superconductor reveals about superconductivity. Physica Scripta, 2014, 89, 015806.	1.2	19
42	Effect of orbital relaxation on the band structure of cuprate superconductors and implications for the superconductivity mechanism. Physical Review B, 2014, 90, .	1.1	11
43	Dynamic Hubbard model for solids with hydrogen-like atoms. Physical Review B, 2014, 90, .	1.1	4
44	Prediction of unexpected behavior of the mean inner potential of superconductors. Physica C: Superconductivity and Its Applications, 2013, 490, 1-4.	0.6	5
45	Dynamic Hubbard model: kinetic energy driven charge expulsion, charge inhomogeneity, hole superconductivity and Meissner effect. Physica Scripta, 2013, 88, 035704.	1.2	10
46	Kinetic energy driven superfluidity and superconductivity and the origin of the Meissner effect. Physica C: Superconductivity and Its Applications, 2013, 493, 18-23.	0.6	9
47	Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography. Ultramicroscopy, 2013, 133, 67-71.	0.8	2
48	Meissner Effect, Spin Meissner Effect and Charge Expulsion in Superconductors. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2239-2246.	0.8	7
49	Reply to "Comment on â€~Spherical agglomeration of superconducting and normal microparticles with and without applied electric field' ― Physical Review B, 2013, 87, .	1.1	0
50	Charge expulsion, charge inhomogeneity, and phase separation in dynamic Hubbard models. Physical Review B, 2013, 87, .	1.1	12
51	Spherical agglomeration of superconducting and normal microparticles with and without applied electric field. Physical Review B, 2012, 86, .	1.1	2
52	Experimental consequences of predicted charge rigidity of superconductors. Physica C: Superconductivity and Its Applications, 2012, 478, 42-48.	0.6	3
53	The origin of the Meissner effect in new and old superconductors. Physica Scripta, 2012, 85, 035704.	1.2	52
54	Correcting 100 Years of Misunderstanding: Electric Fields in Superconductors, Hole Superconductivity, and the Meissner Effect. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1357-1360.	0.8	6

#	Article	IF	CITATIONS
55	Materials and mechanisms of hole superconductivity. Physica C: Superconductivity and Its Applications, 2012, 472, 78-82.	0.6	15
56	KINETIC ENERGY DRIVEN SUPERCONDUCTIVITY AND SUPERFLUIDITY. Modern Physics Letters B, 2011, 25, 2219-2237.	1.0	12
57	Did Herbert Fröhlich predict or postdict the isotope effect in superconductors?. Physica Scripta, 2011, 84, 045705.	1.2	4
58	KINETIC ENERGY DRIVEN SUPERCONDUCTIVITY, THE ORIGIN OF THE MEISSNER EFFECT, AND THE REDUCTIONIST FRONTIER. International Journal of Modern Physics B, 2011, 25, 1173-1200.	1.0	21
59	Why non-superconducting metallic elements become superconducting under high pressure. Physica C: Superconductivity and Its Applications, 2010, 470, S937-S939.	0.6	9
60	Electromotive Forces and the Meissner Effect Puzzle. Journal of Superconductivity and Novel Magnetism, 2010, 23, 309-317.	0.8	26
61	An index to quantify an individual's scientific research output that takes into account the effect of multiple coauthorship. Scientometrics, 2010, 85, 741-754.	1.6	301
62	Explanation of the Meissner effect and prediction of a spin Meissner effect in low and high <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>nl:0.6 nl:mï>c<td>nml:mi></td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:0.6 nl:mï>c <td>nml:mi></td>	nml:mi>
63	Hole core in superconductors and the origin of the Spin Meissner effect. Physica C: Superconductivity and Its Applications, 2010, 470, 635-639.	0.6	11
64	Spin-split states in aromatic molecules and superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3777-3783.	0.9	12
65	Mixed triplet and singlet pairing in ultracold multicomponent fermion systems with dipolar interactions. Physical Review B, 2010, 81, .	1.1	41
66	Effect of electron-electron interactions on Rashba-like and spin-split systems. Physical Review B, 2010, 82, .	1.1	8
67	DOUBLE-VALUEDNESS OF THE ELECTRON WAVEFUNCTION AND ROTATIONAL ZERO-POINT MOTION OF ELECTRONS IN RINGS. Modern Physics Letters B, 2010, 24, 2201-2214.	1.0	7
68	Two-site dynamical mean field theory for the dynamic Hubbard model. Physical Review B, 2010, 82, .	1.1	11
69	WHY HOLES ARE NOT LIKE ELECTRONS IV: HOLE UNDRESSING AND SPIN CURRENT IN THE SUPERCONDUCTING STATE. International Journal of Modern Physics B, 2010, 24, 3627-3652.	1.0	3
70	A new basis set for the description of electrons in superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1880-1884.	0.9	1
71	Charge Expulsion, Spin Meissner Effect, and Charge Inhomogeneity in Superconductors. Journal of Superconductivity and Novel Magnetism, 2009, 22, 131-139.	0.8	12
72	BCS theory of superconductivity: it is time to question its validity. Physica Scripta, 2009, 80, 035702.	1.2	58

#	Article	IF	CITATIONS
7 3	WHY HOLES ARE NOT LIKE ELECTRONS III: HOW HOLES IN THE NORMAL STATE TURN INTO ELECTRONS IN THE SUPERCONDUCTING STATE. International Journal of Modern Physics B, 2009, 23, 3035-3057.	1.0	15
74	Hole superconductivity in arsenic–iron compounds. Physica C: Superconductivity and Its Applications, 2008, 468, 1047-1052.	0.6	24
75	The missing angular momentum of superconductors. Journal of Physics Condensed Matter, 2008, 20, 235233.	0.7	25
76	Electrodynamics of spin currents in superconductors. Annalen Der Physik, 2008, 17, 380-409.	0.9	31
77	Spin Meissner effect in superconductors and the origin of the Meissner effect. Europhysics Letters, 2008, 81, 67003.	0.7	46
78	Does the $\langle i \rangle h \langle i \rangle$ index have predictive power? Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19193-19198.	3.3	774
79	Ionizing radiation from superconductors in the theory of hole superconductivity. Journal of Physics Condensed Matter, 2007, 19, 125217.	0.7	4
80	Do superconductors violate Lenz's law? Body rotation under field cooling and theoretical implications. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 615-619.	0.9	21
81	The fundamental role of charge asymmetry in superconductivity. Journal of Physics and Chemistry of Solids, 2006, 67, 21-26.	1.9	26
82	Spin currents, relativistic effects and the Darwin interaction in the theory of hole superconductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 345, 453-458.	0.9	2
83	Spin currents in superconductors. Physical Review B, 2005, 71, .	1.1	19
84	Explanation of the Tao Effect: Theory for the Spherical Aggregation of Superconducting Microparticles in an Electric Field. Physical Review Letters, 2005, 94, 187001.	2.9	14
85	An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16569-16572.	3.3	7,912
86	Why holes are not like electrons. II. The role of the electron-ion interaction. Physical Review B, 2005, $71, .$	1.1	25
87	Predicted Electric Field near Small Superconducting Ellipsoids. Physical Review Letters, 2004, 92, 016402.	2.9	22
88	Electrodynamics of superconductors. Physical Review B, 2004, 69, .	1.1	51
89	Reply to "Comment on â€~Charge expulsion and electric field in superconductors' ― Physical Review B, 2004, 70, .	1.1	9
90	Spontaneous spinning of a magnet levitating over a superconductor. Physica C: Superconductivity and Its Applications, 2003, 398, 8-12.	0.6	0

#	Article	IF	CITATIONS
91	Superconductors as giant atoms predicted by the theory of hole superconductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 309, 457-464.	0.9	29
92	The Lorentz force and superconductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 315, 474-479.	0.9	28
93	Electron-Hole Asymmetry is the Key to Superconductivity. International Journal of Modern Physics B, 2003, 17, 3236-3241.	1.0	14
94	Electronic dynamic Hubbard model:â€,Exact diagonalization study. Physical Review B, 2003, 67, .	1.1	26
95	Dynamic Hubbard model: Effect of finite boson frequency. Physical Review B, 2003, 68, .	1.1	11
96	Electron-hole asymmetry and superconductivity. Physical Review B, 2003, 68, .	1.1	27
97	Charge expulsion and electric field in superconductors. Physical Review B, 2003, 68, .	1.1	57
98	Superconductors as giant atoms: Qualitative aspects. AIP Conference Proceedings, 2003, , .	0.3	2
99	Quasiparticle Undressing: A New Route to Collective Effects in Solids. , 2003, , 371-380.		1
100	Quasiparticle undressing in a dynamic Hubbard model: Exact diagonalization study. Physical Review B, 2002, 66, .	1.1	21
101	SUPERCONDUCTIVITY: The True Colors of Cuprates. Science, 2002, 295, 2226-2227.	6.0	49
102	Why holes are not like electrons: A microscopic analysis of the differences between holes and electrons in condensed matter. Physical Review B, 2002, 65, .	1.1	51
103	Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model. Physical Review B, 2002, 65, .	1.1	23
104	Dynamic Hubbard Model. Physical Review Letters, 2001, 87, 206402.	2.9	55
105	Electron-phonon or hole superconductivity in MgB2. Physical Review B, 2001, 64, .	1.1	46
106	Consequences of charge imbalance in superconductors within the theory of hole superconductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 281, 44-47.	0.9	31
107	Hole superconductivity in MgB2: a high Tc cuprate without Cu. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 282, 392-398.	0.9	122
108	Where is 99% of the condensation energy of Tl2Ba2CuOy coming from?. Physica C: Superconductivity and Its Applications, 2000, 331, 150-156.	0.6	41

#	Article	lF	Citations
109	Ferromagnetism from undressing. Physical Review B, 2000, 62, 14131-14139.	1.1	18
110	Superconductivity from undressing. Physical Review B, 2000, 62, 14487-14497.	1.1	45
111	Superconductivity from undressing. II. Single-particle Green's function and photoemission in cuprates. Physical Review B, 2000, 62, 14498-14510.	1.1	22
112	Optical sum rule violation, superfluid weight, and condensation energy in the cuprates. Physical Review B, 2000, 62, 15131-15150.	1.1	62
113	Metallic ferromagnetism without exchange splitting. Physical Review B, 1999, 59, 6256-6265.	1.1	47
114	Overlooked contribution to the Hall effect in ferromagnetic metals. Physical Review B, 1999, 60, 14787-14792.	1.1	39
115	Slope of the superconducting gap function inBi2Sr2CaCu2O8+δmeasured by vacuum tunneling spectroscopy. Physical Review B, 1999, 59, 11962-11973.	1.1	33
116	Metallic ferromagnetism from kinetic-energy gain:â€∫The case ofEuB6. Physical Review B, 1999, 59, 436-442.	1.1	23
117	Spin Hall Effect. Physical Review Letters, 1999, 83, 1834-1837.	2.9	2,602
118	Thermoelectric effect in superconductive tunnel junctions. Physical Review B, 1998, 58, 8727-8737.	1.1	11
119	Correlations between normal-state properties and superconductivity. Physical Review B, 1997, 55, 9007-9024.	1.1	47
120	Possible contribution of direct exchange to the superfluidity of He3. Physical Review B, 1997, 55, 8997-9006.	1.1	0
121	Metallic ferromagnetism in a band model: Intra-atomic versus interatomic exchange. Physical Review B, 1997, 56, 11022-11030.	1.1	28
122	Metallic ferromagnetism in a single-band model: Effect of band filling and Coulomb interactions. Physical Review B, 1996, 54, 6364-6375.	1.1	72
123	Role of reduction process in the transport properties of electron-doped oxide superconductors. Physica C: Superconductivity and Its Applications, 1995, 243, 319-326.	0.6	19
124	Pairing in a tight-binding model with occupation-dependent hopping rate: Exact diagonalization study. Physical Review B, 1995, 52, 16155-16164.	1.1	17
125	Electron–hole asymmetric polarons. , 1995, , 234-257.		4
126	Tunneling and thermoelectric effect in generalized tunnel junctions in the presence of electron-hole asymmetry. Physical Review B, 1994, 50, 3165-3180.	1.1	17

#	Article	IF	CITATIONS
127	Thermoelectric power of superconductive tunnel junctions. Physical Review Letters, 1994, 72, 558-561.	2.9	12
128	Superconductivity from retarded interactions in the presence of electron-hole asymmetry. Physical Review B, 1994, 49, 1366-1375.	1.1	18
129	Color change and other unusual spectroscopic features predicted by the model of hole superconductivity. Journal of Physics and Chemistry of Solids, 1993, 54, 1101-1107.	1.9	5
130	Polaronic superconductivity in the absence of electron-hole symmetry. Physical Review B, 1993, 47, 5351-5358.	1.1	41
131	Electron- and hole-hopping amplitudes in a diatomic molecule. Physical Review B, 1993, 48, 3327-3339.	1.1	51
132	Electron- and hole-hopping amplitudes in a diatomic molecule. II. Effect of radial correlations. Physical Review B, 1993, 48, 3340-3348.	1.1	14
133	Electron- and hole-hopping amplitudes in a diatomic molecule. III.porbitals. Physical Review B, 1993, 48, 9815-9824.	1.1	12
134	Superconductivity in the transition-metal series. Physical Review B, 1992, 46, 14702-14712.	1.1	13
135	Hole superconductivity in a generalized two-band model. Physical Review B, 1992, 45, 12556-12560.	1.1	9
136	London penetration depth in hole superconductivity. Physical Review B, 1992, 45, 4807-4818.	1.1	57
137	Theory and Experiment in High-Temperature Superconductivity. Science, 1992, 258, 672-672.	6.0	1
138	Normal state properties of high-Tc oxides. Physica C: Superconductivity and Its Applications, 1992, 195, 355-366.	0.6	17
139	Apparent violation of the conductivity sum rule in certain superconductors. Physica C: Superconductivity and Its Applications, 1992, 199, 305-310.	0.6	115
140	Superconductors that change color when they become superconducting. Physica C: Superconductivity and Its Applications, 1992, 201, 347-361.	0.6	80
141	Effect of local potential variations in the model of hole superconductivity. Physica C: Superconductivity and Its Applications, 1992, 194, 119-125.	0.6	10
142	Pairing in a generalized Holstein model for small polarons. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 168, 305-307.	0.9	2
143	Theory and Experiment in High-Temperature Superconductivity. Science, 1992, 258, 672-672.	6.0	0
144	Bose decondensation versus pair unbinding in short-coherence-length superconductors. Physica C: Superconductivity and Its Applications, 1991, 179, 317-332.	0.6	24

#	Article	IF	CITATIONS
145	Why is photoemission better than inverse photoemission for studying high-Tc oxides?. Physica C: Superconductivity and Its Applications, 1991, 182, 277-284.	0.6	8
146	Hole superconductivity in oxides: A two-band model. Physical Review B, 1991, 43, 424-434.	1.1	84
147	Coherence effects in hole superconductivity. Physical Review B, 1991, 44, 11960-11970.	1.1	13
148	Pairing of holes in a tight-binding model with repulsive Coulomb interactions. Physical Review B, 1991, 43, 11400-11403.	1.1	25
149	Weak ferromagnetism in a band model: Application toSc3In. Physical Review B, 1991, 44, 675-685.	1.1	16
150	Metallic ferromagnetism in a single-band model. IV. Effect of pair hopping. Physical Review B, 1991, 43, 705-711.	1.1	39
151	Electron-Hole Asymmetry: The Key to Superconductivity. , 1991, , 295-308.		4
152	Empirical estimate of Coulomb matrix element of relevance to superconductivity. Chemical Physics Letters, 1990, 171, 161-166.	1.2	20
153	Superconductivity in oxides: From strong to weak coupling. Physica C: Superconductivity and Its Applications, 1990, 165, 71-76.	0.6	36
154	Superconductivity and hydromagnetism. Physica B: Condensed Matter, 1990, 163, 291-298.	1.3	23
155	Hole superconductivity in the dilute limit. Physica C: Superconductivity and Its Applications, 1990, 171, 554-560.	0.6	37
156	Prediction for the change in lattice constants of electron-doped high- Tc superconductors under hydrostatic pressure based on the observed pressure dependence of Tc. Physica C: Superconductivity and Its Applications, 1990, 172, 265-266.	0.6	7
157	Spin-split states in metals. Physical Review B, 1990, 41, 6820-6827.	1.1	34
158	Metallic ferromagnetism in a single-band model. III. One-dimensional half-filled band. Physical Review B, 1990, 42, 771-778.	1.1	27
159	Chromium: A possible spin-split metal. Physical Review B, 1990, 41, 6828-6835.	1.1	14
160	Study of the accuracy of the Gutzwiller wave function for the two-dimensional Hubbard model. Physical Review B, 1990, 41, 4410-4415.	1.1	4
161	Spontaneous electrostatic potential in spin-split metals. Physical Review B, 1990, 42, 4774-4775.	1.1	21
162	Hole superconductivity and the high-Tcoxides. Physical Review B, 1990, 41, 6435-6456.	1.1	178

#	Article	IF	CITATIONS
163	Superconductivity in an oxygen hole metal. Physical Review B, 1990, 41, 2049-2051.	1.1	47
164	Mechanism of metallic ferromagnetism. Journal of Applied Physics, 1990, 67, 4549-4551.	1.1	9
165	Spin-wave theory of the quantum antiferromagnet with unbroken sublattice symmetry. Physical Review B, 1989, 40, 4769-4772.	1.1	113
166	Metallic ferromagnetism in a single-band model. Physical Review B, 1989, 40, 2354-2361.	1.1	96
167	Pairing interaction in CuO clusters. Physical Review B, 1989, 39, 243-253.	1.1	121
168	Antiferromagnetism in the Two-Dimensional Hubbard Model. Physical Review Letters, 1989, 62, 591-594.	2.9	205
169	Quantum Monte Carlo study of the two-impurity Kondo Hamiltonian. Physical Review B, 1989, 40, 4780-4796.	1.1	90
170	Two-dimensional Heisenberg antiferromagnet with next-nearest-neighbor coupling. Physical Review B, 1989, 39, 2887-2889.	1.1	51
171	Superconducting state in an oxygen hole metal. Physical Review B, 1989, 39, 11515-11525.	1.1	236
172	Effective interactions in an oxygen-hole metal. Physical Review B, 1989, 40, 2179-2186.	1.1	56
173	Sublattice-symmetric spin-wave theory for the Heisenberg antiferromagnet. Physical Review B, 1989, 40, 5000-5006.	1.1	53
174	Reply to "Comment on `Peierls instability in the two-dimensional half-filler Hubbard model' ". Physical Review B, 1989, 39, 12327-12328.	1.1	15
175	Comment on a mean-field theory of quantum antiferromagnets. Physical Review B, 1989, 39, 2850-2851.	1.1	60
176	Metallic ferromagnetism in a single-band model. II. Finite-temperature magnetic properties. Physical Review B, 1989, 40, 9061-9069.	1.1	57
177	Comment on â€~â€~Ground state of the strong-coupling Hubbard Hamiltonian: A numerical diagonalization study''. Physical Review B, 1989, 40, 2594-2595.	1.1	2
178	Long-range order without broken symmetry: Two-dimensional Heisenberg antiferromagnet at zero temperature. Physical Review B, 1989, 39, 4548-4553.	1.1	81
179	Hole superconductivity: The strong coupling limit. Physica C: Superconductivity and Its Applications, 1989, 161, 185-194.	0.6	27
180	Bond-charge repulsion and hole superconductivity. Physica C: Superconductivity and Its Applications, 1989, 158, 326-336.	0.6	215

#	Article	IF	Citations
181	Tunneling asymmetry: A test of superconductivity mechanisms. Physica C: Superconductivity and Its Applications, 1989, 159, 157-160.	0.6	38
182	Singlet pairs, covalent bonds, superexchange, and superconductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 136, 163-166.	0.9	35
183	Hole superconductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 134, 451-455.	0.9	154
184	On the dependence of superconducting Tc on carrier concentration. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 140, 122-126.	0.9	41
185	Ferromagnetism in metallic hydrogen. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 141, 191-195.	0.9	17
186	Coulomb attraction between Bloch electrons. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 138, 83-87.	0.9	63
187	Hole superconductivity in oxides. Solid State Communications, 1989, 69, 987-989.	0.9	54
188	Hole Conductors and Superconductors. Materials Research Society Symposia Proceedings, 1989, 156, 349.	0.1	5
189	Pairing interaction in two-dimensionalCuO2. Physical Review Letters, 1988, 60, 1668-1671.	2.9	197
190	Peierls instability in the two-dimensional half-filled Hubbard model. Physical Review B, 1988, 37, 9546-9558.	1.1	84
191	Monte Carlo study of the symmetric Anderson-impurity model. Physical Review B, 1988, 38, 433-441.	1.1	81
192	Magnetic properties of a degenerate Anderson impurity. Physical Review B, 1988, 37, 1864-1873.	1.1	15
193	Pairing in the two-dimensional Hubbard model: An exact diagonalization study. Physical Review B, 1988, 37, 7359-7367.	1.1	73
194	Hirsch Replies:. Physical Review Letters, 1988, 60, 380-380.	2.9	3
195	Stable monte carlo algorithm for fermion lattice systems at low temperatures. Physical Review B, 1988, 38, 12023-12026.	1.1	68
196	Pairing in the two-dimensional Hubbard model: A Monte Carlo study. Physical Review B, 1988, 37, 5070-5074.	1.1	88
197	Antiferromagnetism, localization, and pairing in a two-dimensional model forCuO2. Physical Review Letters, 1987, 59, 228-231.	2.9	381
198	Two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping. Physical Review B, 1987, 35, 3359-3368.	1.1	159

#	Article	IF	CITATIONS
199	Interaction between localized moments in metals: A Monte Carlo study. Physical Review B, 1987, 35, 4943-4947.	1.1	9
200	Hirsch Replies. Physical Review Letters, 1987, 59, 2618-2618.	2.9	0
201	Simulations of the three-dimensional Hubbard model: Half-filled band sector. Physical Review B, 1987, 35, 1851-1859.	1.1	84
202	Monte Carlo study of the Alexander–Anderson model. Journal of Applied Physics, 1987, 61, 3703-3705.	1.1	0
203	Spin and charge correlations around an Anderson magnetic impurity. Physical Review B, 1987, 35, 8478-8485.	1.1	85
204	Antiferromagnetic singlet pairs, high-frequency phonons, and superconductivity. Physical Review B, 1987, 35, 8726-8729.	1.1	95
205	Simulation of Magnetic Impurities in Metals. Springer Series in Solid-state Sciences, 1987, , 205-215.	0.3	4
206	Kondo effect versus indirect exchange in the two-impurity Anderson model: A Monte Carlo study. Physical Review B, 1987, 35, 4901-4908.	1.1	75
207	On the static approximation for the Hubbard Hamiltonian. Journal of Applied Physics, 1987, 61, 3706-3708.	1.1	2
208	Fermi-surface instabilities and superconductingd-wave pairing. Physical Review B, 1987, 35, 6694-6698.	1.1	225
209	Monte Carlo Simulation of Magnetic Impurities in Metals. , 1987, , 115-123.		0
210	Enhanced Superconductivity in Quasi Two-Dimensional Systems. Physical Review Letters, 1986, 56, 2732-2735.	2.9	266
211	d-wave pairing near a spin-density-wave instability. Physical Review B, 1986, 34, 8190-8192.	1.1	754
212	Monte Carlo Method for Magnetic Impurities in Metals. Physical Review Letters, 1986, 56, 2521-2524.	2.9	688
213	Simulations of the Hubbard model. Journal of Statistical Physics, 1986, 43, 841-859.	0.5	15
214	Connection between world-line and determinantal functional-integral formulations of the Hubbard model. Physical Review B, 1986, 34, 3216-3220.	1.1	24
215	Condensation transition in the one-dimensional extended Hubbard model. Physical Review B, 1986, 33, 8155-8163.	1.1	57
216	Monte Carlo versus Langevin methods for nonpositive definite weights. Physical Review B, 1986, 34, 1964-1967.	1.1	20

#	Article	IF	Citations
217	Phase diagram of the one-dimensional molecular-crystal model with Coulomb interactions: Half-filled-band sector. Physical Review B, 1985, 31, 6022-6031.	1.1	82
218	Spin susceptibilities of a one-dimensional disordered quantum Heisenberg antiferromagnet. Physical Review B, 1985, 32, 7320-7324.	1.1	12
219	Double-valence-fluctuating molecules and superconductivity. Physical Review B, 1985, 32, 5639-5643.	1.1	77
220	Attractive Interaction and Pairing in Fermion Systems with Strong On-Site Repulsion. Physical Review Letters, 1985, 54, 1317-1320.	2.9	548
221	Excitonic mechanism for superconductivity in a quasi-one-dimensional system. Physical Review B, 1985, 32, 117-134.	1.1	53
222	Two-dimensional Hubbard model: Numerical simulation study. Physical Review B, 1985, 31, 4403-4419.	1.1	943
223	Magnetism in the twoâ€dimensional Hubbard model (abstract). Journal of Applied Physics, 1985, 57, 3042-3042.	1.1	0
224	Pairing and Charge-Density-Wave Correlations in a One-Dimensional Electron-Exciton Model. Physical Review Letters, 1984, 53, 706-709.	2.9	14
225	2pFand4pFinstabilities in the one-dimensional Hubbard model. Physical Review B, 1984, 29, 5554-5561.	1.1	102
226	Strong-coupling expansion for a Kondo-lattice model. Physical Review B, 1984, 30, 5383-5385.	1.1	31
227	Solitons in Polyacetylene: A Monte Carlo Study. Physical Review Letters, 1984, 52, 1713-1716.	2.9	108
228	Charge-Density-Wave to Spin-Density-Wave Transition in the Extended Hubbard Model. Physical Review Letters, 1984, 53, 2327-2330.	2.9	217
229	Discrete Hubbard-Stratonovich transformation for fermion lattice models. Physical Review B, 1983, 28, 4059-4061.	1.1	388
230	Effect of Coulomb Interactions on the Peierls Instability. Physical Review Letters, 1983, 51, 296-299.	2.9	200
231	Phase diagram of one-dimensional electron-phonon systems. I. The Su-Schrieffer-Heeger model. Physical Review B, 1983, 27, 1680-1697.	1.1	249
232	Phase diagram of one-dimensional electron-phonon systems. II. The molecular-crystal model. Physical Review B, 1983, 27, 4302-4316.	1.1	211
233	2pFand4pFInstabilities in the One-Dimensional Electron Gas. Physical Review Letters, 1983, 50, 1168-1171.	2.9	49
234	Dynamic correlation functions in quantum systems: A Monte Carlo algorithm. Physical Review B, 1983, 28, 5353-5356.	1.1	17

#	Article	IF	Citations
235	Monte Carlo Study of the Two-Dimensional Hubbard Model. Physical Review Letters, 1983, 51, 1900-1903.	2.9	72
236	2pFand4pFinstabilities in a one-quarter-filled-band Hubbard model. Physical Review B, 1983, 27, 7169-7185.	1.1	128
237	Block-spin renormalization group in the large-nlimit. Physical Review B, 1983, 27, 1736-1744.	1.1	31
238	ELECTRONIC POLARIZABILITIES OF A 1/4-FILLED EXTENDED HUBBARD MODEL. Journal De Physique Colloque, 1983, 44, C3-1507-C3-1511.	0.2	4
239	Approximate mapping of the two-impurity symmetric Anderson model in the local-moment regime to a classical problem. Physical Review B, 1982, 25, 3273-3282.	1.1	20
240	Monte Carlo simulations of one-dimensional fermion systems. Physical Review B, 1982, 26, 5033-5055.	1.1	454
241	Renormalization-group study of a concentrated fluctuating-valence model. Physical Review B, 1982, 25, 6748-6759.	1.1	27
242	Theory of intermittency. Physical Review A, 1982, 25, 519-532.	1.0	343
243	Effect of Quantum Fluctuations on the Peierls Instability: A Monte Carlo Study. Physical Review Letters, 1982, 49, 402-405.	2.9	109
244	Intermittency in the presence of noise: A renormalization group formulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1982, 87, 391-393.	0.9	110
245	Efficient Monte Carlo Procedure for Systems with Fermions. Physical Review Letters, 1981, 47, 1628-1631.	2.9	178
246	Real-space dynamic renormalization group. III. Calculation of correlation functions. Physical Review B, 1981, 23, 1431-1446.	1.1	17
247	Universality in Quantum Random Magnetic Chains. Springer Series in Solid-state Sciences, 1981, , 302-305.	0.3	0
248	Low-temperature thermodynamic properties of a random Heisenberg antiferromagnetic chain ($S=1/2$). Journal of Physics C: Solid State Physics, 1980, 13, L53-L60.	1.5	26
249	Dynamical Correlation Functions in the Two-Dimensional Kinetic Ising Model: A Real-Space Renormalization-Group Approach. Physical Review Letters, 1980, 44, 1083-1086.	2.9	12
250	Low-temperature thermodynamic properties of a random anisotropic antiferromagnetic chain. Physical Review B, 1980, 22, 5355-5365.	1.1	41
251	Singular thermodynamic properties in random magnetic chains. Physical Review B, 1980, 22, 5339-5354.	1.1	60
252	Renormalization-group study of the Hubbard model. Physical Review B, 1980, 22, 5259-5266.	1.1	109

#	Article	IF	CITATIONS
253	Renormalization-group transformation for quantum lattice systems at zero temperature. Physical Review B, 1979, 19, 2656-2663.	1.1	49
254	Renormalization-group calculation for the two-dimensional square Ising model in a transverse magnetic field. Physical Review B, 1979, 20, 3907-3912.	1.1	16
255	Spectra density of a random chain of oscillators: Cellular coherent-potential approximation calculations. Physical Review B, 1978, 18, 3976-3979.	1.1	2
256	Exact spectral density of a random chain of oscillators. Physical Review B, 1977, 15, 779-787.	1.1	6
257	Physical properties of disordered linear chains: A Monte Carlo approach. Physical Review B, 1976, 14, 2433-2441.	1.1	15