Ramin E Beygui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10410111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano, 2012, 6, 227-233.	14.6	434
2	Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials, 2008, 29, 2907-2914.	11.4	408
3	Wireless power transfer to deep-tissue microimplants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7974-7979.	7.1	399
4	Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials, 2007, 28, 1672-1679.	11.4	251
5	Human Adipose Stem Cells: A Potential Cell Source for Cardiovascular Tissue Engineering. Cells Tissues Organs, 2008, 187, 263-274.	2.3	110
6	Protein–Polymer Hybrid Nanoparticles for Drug Delivery. Small, 2012, 8, 3573-3578.	10.0	87
7	Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnology and Bioengineering, 2007, 97, 962-975.	3.3	85
8	The use of three-dimensional nanostructures to instruct cells to produce extracellular matrix for regenerative medicine strategies. Biomaterials, 2009, 30, 4665-4675.	11.4	62
9	Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991–2020. Computers in Biology and Medicine, 2021, 128, 104095.	7.0	55
10	A matrix micropatterning platform for cell localization and stem cell fate determination. Acta Biomaterialia, 2010, 6, 4614-4621.	8.3	49
11	Influence of Systematically Varied Nano-Scale Topography on Cell Morphology and Adhesion. Cell Communication and Adhesion, 2007, 14, 181-194.	1.0	44
12	Celecoxib Nanoparticles for Therapeutic Angiogenesis. ACS Nano, 2015, 9, 9416-9426.	14.6	44
13	Wirelessly powering miniature implants for optogenetic stimulation. Applied Physics Letters, 2013, 103, .	3.3	41
14	Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum. Stem Cell Research and Therapy, 2016, 7, 84.	5.5	38
15	Cell growth as a sheet on threeâ€dimensional sharpâ€tip nanostructures. Journal of Biomedical Materials Research - Part A, 2009, 89A, 804-817.	4.0	31
16	Aortic Arch Vessel Geometries and Deformations in Patients with Thoracic Aortic Aneurysms and Dissections. Journal of Vascular and Interventional Radiology, 2014, 25, 1903-1911.	0.5	29
17	A histological and mechanical analysis of the cardiac lead–tissue interface: implications for lead extraction. Acta Biomaterialia, 2014, 10, 2200-2208.	8.3	28
18	Reported mortality with rotating sheaths vs. laser sheaths for transvenous lead extraction. Europace, 2019, 21, 1703-1709.	1.7	28

RAMIN E BEYGUI

#	Article	IF	CITATIONS
19	Adipose tissueâ€derived stem cells display a proangiogenic phenotype on 3D scaffolds. Journal of Biomedical Materials Research - Part A, 2011, 98A, 383-393.	4.0	24
20	Robust pluripotent stem cell expansion and cardiomyocyte differentiation <i>via</i> geometric patterning. Integrative Biology (United Kingdom), 2013, 5, 1495-1506.	1.3	24
21	Congenital Anomalies of the Aortic Arch in Acute Type-A Aortic Dissection: Implications for Monitoring, Perfusion Strategy, and Surgical Repair. Journal of Cardiothoracic and Vascular Anesthesia, 2014, 28, 467-472.	1.3	17
22	Mesenchymal Stromal Cell Therapy. Transplantation, 2015, 99, 1113-1118.	1.0	12
23	Immunobiology of Fibrin-Based Engineered Heart Tissue. Stem Cells Translational Medicine, 2015, 4, 625-631.	3.3	10
24	Hypoxic Cell Death is Reduced by pH Buffering in a Model of Engineered Heart Tissue. Artificial Cells, Blood Substitutes, and Biotechnology, 2008, 36, 94-113.	0.9	6
25	Prevention of Spinal Cord Ischemia in an Ovine Model of Abdominal Aortic Aneurysm Treated with a Self-Expanding Stent-Graft. Journal of Endovascular Therapy, 1999, 6, 278-284.	1.5	4
26	Analysis of pH Gradients Resulting from Mass Transport Limitations in Engineered Heart Tissue. Annals of Biomedical Engineering, 2007, 35, 1885-1897.	2.5	4
27	Cardiac metastases and tumor embolization: A rare sequelae of primary undifferentiated liver sarcoma. International Journal of Surgery Case Reports, 2014, 5, 927-931.	0.6	2
28	Quantification of motion of the thoracic aorta after ascending aortic repair of type-A dissection. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 811-819.	2.8	2
29	Repair of the symptomatic aberrant aortic arch aneurysm without hypothermic circulatory arrest. Interactive Cardiovascular and Thoracic Surgery, 2004, 3, 569-572.	1.1	1
30	Volumetric analysis demonstrates that true and false lumen remodeling persists for 12Åmonths after thoracic endovascular aortic repair. Journal of Vascular Surgery Cases and Innovative Techniques, 2016, 2, 101-104.	0.6	0
31	10.1063/1.4825272.1., 2013, , .		0