List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10409030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350, 1508-1513.	12.6	1,821
2	Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy and Environmental Science, 2013, 6, 3007.	30.8	626
3	Hâ€Đoped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Advanced Functional Materials, 2013, 23, 5444-5450.	14.9	621
4	Core-Shell Nanostructured "Black―Rutile Titania as Excellent Catalyst for Hydrogen Production Enhanced by Sulfur Doping. Journal of the American Chemical Society, 2013, 135, 17831-17838.	13.7	425
5	Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy, 2018, 51, 579-587.	16.0	425
6	Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy and Environmental Science, 2014, 7, 967.	30.8	376
7	Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703155.	19.5	374
8	Black TiO ₂ nanotube arrays for high-efficiency photoelectrochemical water-splitting. Journal of Materials Chemistry A, 2014, 2, 8612-8616.	10.3	355
9	Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy, 2019, 61, 617-625.	16.0	340
10	Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage. Advanced Functional Materials, 2013, 23, 2263-2269.	14.9	277
11	Progress in Black Titania: A New Material for Advanced Photocatalysis. Advanced Energy Materials, 2016, 6, 1600452.	19.5	251
12	Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium-sulfur batteries. Energy and Environmental Science, 2013, 6, 1283.	30.8	246
13	Mechanistic Insights of Zn ²⁺ Storage in Sodium Vanadates. Advanced Energy Materials, 2018, 8, 1801819.	19.5	225
14	A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithiumâ€lon Batteries Possible. Advanced Materials, 2017, 29, 1700136.	21.0	212
15	A facile preparation route for boron-doped graphene, and its CdTe solar cell application. Energy and Environmental Science, 2011, 4, 862-865.	30.8	208
16	A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure. Advanced Materials, 2015, 27, 5943-5949.	21.0	193
17	Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. Biomaterials, 2016, 84, 13-24.	11.4	189
18	Black brookite titania with high solar absorption and excellent photocatalytic performance. Journal of Materials Chemistry A, 2013, 1, 9650.	10.3	175

#	Article	IF	CITATIONS
19	Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS Applied Materials & Interfaces, 2013, 5, 1408-1413.	8.0	144
20	Black Nb ₂ O ₅ nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Transactions, 2016, 45, 3888-3894.	3.3	104
21	New Graphene Form of Nanoporous Monolith for Excellent Energy Storage. Nano Letters, 2016, 16, 349-354.	9.1	100
22	Low-Temperature Aluminum Reduction of Graphene Oxide, Electrical Properties, Surface Wettability, and Energy Storage Applications. ACS Nano, 2012, 6, 9068-9078.	14.6	91
23	Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale, 2016, 8, 4705-4712.	5.6	86
24	Facile and economical exfoliation of graphite for mass production of high-quality graphene sheets. Journal of Materials Chemistry A, 2013, 1, 500-504.	10.3	85
25	Black nanostructured Nb ₂ O ₅ with improved solar absorption and enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 11830-11837.	10.3	85
26	Gray TiO ₂ Nanowires Synthesized by Aluminumâ€Mediated Reduction and Their Excellent Photocatalytic Activity for Water Cleaning. Chemistry - A European Journal, 2013, 19, 13313-13316.	3.3	74
27	Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water Splitting. ChemCatChem, 2015, 7, 2614-2619.	3.7	73
28	Gray Ta ₂ O ₅ Nanowires with Greatly Enhanced Photocatalytic Performance. ACS Applied Materials & Interfaces, 2016, 8, 122-127.	8.0	73
29	An electron injection promoted highly efficient electrocatalyst of FeNi ₃ @GR@Fe-NiOOH for oxygen evolution and rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016, 4, 7762-7771.	10.3	70
30	Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction. Journal of Materials Chemistry, 2011, 21, 10685.	6.7	68
31	Heat transport enhancement of thermal energy storage material using graphene/ceramic composites. Carbon, 2014, 75, 314-321.	10.3	65
32	Oriented single-crystalline nickel sulfidenanorod arrays: "two-in-one―counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 194-198.	10.3	56
33	A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy. Theranostics, 2017, 7, 1531-1542.	10.0	54
34	Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent. Nanoscale, 2016, 8, 4054-4062.	5.6	51
35	Highly conductive, free-standing and flexible graphene papers for energy conversion and storage devices. RSC Advances, 2013, 3, 8454.	3.6	47
36	Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping. ACS Omega, 2018, 3, 15009-15017.	3.5	46

#	Article	IF	CITATIONS
37	Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. Dalton Transactions, 2017, 46, 1047-1051.	3.3	45
38	Efficient Conversion of CO ₂ to Methane Photocatalyzed by Conductive Black Titania. ChemCatChem, 2017, 9, 4389-4396.	3.7	42
39	Autonomously Controlled Homogenous Growth of Waferâ€ized Highâ€Quality Graphene via a Smart Janus Substrate. Advanced Functional Materials, 2012, 22, 1033-1039.	14.9	41
40	Colored titania nanocrystals and excellent photocatalysis for water cleaning. Catalysis Communications, 2015, 60, 55-59.	3.3	41
41	Black strontium titanate nanocrystals of enhanced solar absorption for photocatalysis. CrystEngComm, 2015, 17, 7528-7534.	2.6	40
42	Directional architecture of graphene/ceramic composites with improved thermal conduction for thermal applications. Journal of Materials Chemistry A, 2014, 2, 2187-2193.	10.3	38
43	Three-dimensional porous graphene-like carbon cloth from cotton as a free-standing lithium-ion battery anode. Journal of Materials Chemistry A, 2016, 4, 11762-11767.	10.3	38
44	Boron-Induced Nitrogen Fixation in 3D Carbon Materials for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 28075-28082.	8.0	34
45	A three-dimensional elastic macroscopic graphene network for thermal management application. Journal of Materials Chemistry A, 2014, 2, 18215-18218.	10.3	31
46	The production of large bilayer hexagonal graphene domains by a two-step growth process of segregation and surface-catalytic chemical vapor deposition. Carbon, 2012, 50, 2703-2709.	10.3	30
47	New facile synthesis of TiO2 hollow sphere with an opening hole and its enhanced rate performance in lithium-ion batteries. New Journal of Chemistry, 2013, 37, 784.	2.8	29
48	A bridge between battery and supercapacitor for power/energy gap by using dual redox-active ions electrolyte. Chemical Engineering Journal, 2019, 375, 122054.	12.7	28
49	Hydrogen flame synthesis of few-layer graphene from a solid carbon source on hexagonal boron nitride. Journal of Materials Chemistry, 2012, 22, 2859.	6.7	27
50	Self-regulating homogenous growth of high-quality graphene on Co–Cu composite substrate for layer control. Nanoscale, 2013, 5, 5847.	5.6	25
51	Monodisperse Pt nanoparticles anchored on N-doped black TiO2 as high performance bifunctional electrocatalyst. Journal of Alloys and Compounds, 2017, 701, 669-675.	5.5	24
52	Sol-gel assisted chemical activation for nitrogen doped porous carbon. Microporous and Mesoporous Materials, 2019, 286, 18-24.	4.4	22
53	Molten salt assisted synthesis of black titania hexagonal nanosheets with tuneable phase composition and morphology. RSC Advances, 2015, 5, 85928-85932.	3.6	21
54	Facile Synthesis of Nitrogen and Halogen Dualâ€Doped Porous Graphene as an Advanced Performance Anode for Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2018, 5, 1701261.	3.7	21

#	Article	IF	CITATIONS
55	Rapid Microwave Synthesis of Graphene Directly on <i>h</i> -BN with Excellent Heat Dissipation Performance. ACS Applied Materials & Interfaces, 2014, 6, 3088-3092.	8.0	18
56	Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2015, 7, 25306-25312.	8.0	18
57	Carbon microtube/graphene hybrid structures for thermal management applications. Journal of Materials Chemistry A, 2015, 3, 18706-18710.	10.3	18
58	Tunable Synthesis of Colorful Nitrogen-Doped Titanium Oxide and Its Application in Energy Storage. ACS Applied Energy Materials, 2018, 1, 876-882.	5.1	18
59	Graphene-like carbon with three-dimensional periodicity prepared from organic-inorganic templates for energy storage application. Carbon, 2017, 111, 128-132.	10.3	17
60	Nitrogen-doped black titania for high performance supercapacitors. Science China Materials, 2020, 63, 1227-1234.	6.3	17
61	A novel method for direct growth of a few-layer graphene on Al2O3 film. Carbon, 2014, 71, 20-26.	10.3	15
62	Facile sol-gel method combined with chemical vapor deposition for mesoporous few-layer carbon. Carbon, 2017, 112, 47-52.	10.3	15
63	Boosting Supercapacitor Performance of TiO ₂ Nanobelts by Efficient Nitrogen Doping. ChemElectroChem, 2017, 4, 2328-2335.	3.4	14
64	Extraordinary Porous Few-Layer Carbons of High Capacitance from Pechini Combustion of Magnesium Nitrate Gel. ACS Applied Materials & Interfaces, 2018, 10, 381-388.	8.0	13
65	A Facile Approach To Improve Electrochemical Capacitance of Carbons by in Situ Electrochemical Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 5999-6008.	8.0	10
66	Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors. Microporous and Mesoporous Materials, 2020, 294, 109884.	4.4	10
67	Sodiumâ€ion Batteries: Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€ion Battery Anode (Adv. Energy Mater. 19/2018). Advanced Energy Materials, 2018, 8, 1870092.	19.5	9
68	A <i>Ï€</i> onjugated Polyimideâ€Based Highâ€Performance Aqueous Potassiumâ€Ion Asymmetric Supercapacitor. Macromolecular Rapid Communications, 2022, 43, e2200040.	3.9	8
69	SiO2 stabilizes electrochemically active nitrogen in few-layer carbon electrodes of extraordinary capacitance. Journal of Energy Chemistry, 2020, 49, 179-188.	12.9	7
70	The hierarchical structure of cubic K _{0.5} La _{0.5} TiO ₃ layers and enhanced photocatalytic hydrogen evolution after surface acidification. Dalton Transactions, 2015, 44, 18665-18670.	3.3	6
71	Variable texture few-layer ordered macroporous carbon for high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2017, 5, 25171-25176.	10.3	6
72	Design rules of pseudocapacitive electrode materials: ion adsorption, diffusion, and electron transmission over prototype TiO2. Science China Materials, 2022, 65, 391-399.	6.3	6

#	Article	IF	CITATIONS
73	Electrodes with Electrodeposited Water-excluding Polymer Coating Enable High-Voltage Aqueous Supercapacitors. Research, 2020, 2020, 4178179.	5.7	6
74	Observation of High Capacitance from Molecular Gd@C ₈₂ in Aqueous Electrolyte Derived from Energyâ€Level Matching with Proton. Advanced Materials Interfaces, 2018, 5, 1800240.	3.7	5
75	Realization of an anion insertion mechanism for high-rate electrochemical energy storage in highly crystalline few-layered potassium manganese dioxide nanosheets. Journal of Materials Chemistry A, 2022, 10, 9402-9407.	10.3	4
76	Constructing Hierarchical Porous Carbon of Highâ€Performance Capacitance through a Twoâ€Step Nitrogenâ€Fixation Method. Energy Technology, 2020, 8, 2000107.	3.8	3