Patrick H O'farrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10407340/publications.pdf

Version: 2024-02-01

65 papers 12,935 citations

44 h-index

57758

106344 65 g-index

65 all docs

65
docs citations

times ranked

65

7017 citing authors

#	Article	IF	CITATIONS
1	High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell, 1977, 12, 1133-1142.	28.9	3,808
2	Genetic control of cell division patterns in the Drosophila embryo. Cell, 1989, 57, 177-187.	28.9	604
3	The sequence specificity of homeodomain-DNA interaction. Cell, 1988, 54, 1081-1090.	28.9	534
4	The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biology, 2006, 8, 793-802.	10.3	470
5	The roles of Drosophila cyclins A and B in mitotic control. Cell, 1990, 61, 535-547.	28.9	463
6	The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell, 1990, 62, 469-480.	28.9	442
7	Expression and function of Drosophila cyclin a during embryonic cell cycle progression. Cell, 1989, 56, 957-968.	28.9	432
8	The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature, 1985, 318, 630-635.	27.8	425
9	Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature, 1988, 332, 604-609.	27.8	404
10	Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell, 1991, 67, 303-310.	28.9	377
11	Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature, 1991, 352, 404-410.	27.8	270
12	Activation and repression of transcription by homoeodomain-containing proteins that bind a common site. Nature, 1988, 336, 744-749.	27.8	254
13	Terminal Cytokinesis Events Uncovered after an RNAi Screen. Current Biology, 2004, 14, 1685-1693.	3.9	252
14	Identification of Drosophila Gene Products Required for Phagocytosis of Candida albicans. PLoS Biology, 2005, 4, e4.	5.6	246
15	Nitric Oxide Contributes to Behavioral, Cellular, and Developmental Responses to Low Oxygen in Drosophila. Cell, 1999, 98, 105-114.	28.9	231
16	Functional Dissection of an Innate Immune Response by a Genome-Wide RNAi Screen. PLoS Biology, 2004, 2, e203.	5.6	218
17	An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell, 1991, 66, 1207-1216.	28.9	174
18	Embryonic Cleavage Cycles: How Is a Mouse Like a Fly?. Current Biology, 2004, 14, R35-R45.	3.9	171

#	Article	IF	CITATIONS
19	Spatial Programming of Gene Expression in Early Drosophila Embryogenesis. Annual Review of Cell Biology, 1986, 2, 49-80.	26.1	170
20	The state of engrailed expression is not clonally transmitted during early Drosophila development. Cell, 1992, 68, 923-931.	28.9	168
21	Triggering the all-or-nothing switch into mitosis. Trends in Cell Biology, 2001, 11, 512-519.	7.9	166
22	From Egg to Gastrula: How the Cell Cycle Is Remodeled During the <i>Drosophila </i> Mid-Blastula Transition. Annual Review of Genetics, 2014, 48, 269-294.	7.6	165
23	The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Current Biology, 2001, 11, 671-683.	3.9	145
24	Fluctuations in Cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila. Current Biology, 1998, 8, 235-238.	3.9	133
25	The making of a maggot: patterning the Drosophila embryonic epidermis. Current Opinion in Genetics and Development, 1994, 4, 529-534.	3.3	130
26	Rho-dependent control of anillin behavior during cytokinesis. Journal of Cell Biology, 2008, 180, 285-294.	5.2	126
27	Rho-kinase Controls Cell Shape Changes during Cytokinesis. Current Biology, 2006, 16, 359-370.	3.9	117
28	Developmental Control of Late Replication and S Phase Length. Current Biology, 2010, 20, 2067-2077.	3.9	104
29	Transcribed genes are localized according to chromosomal position within polarized Drosophila embryonic nuclei. Current Biology, 1999, 9, 1263-S6.	3.9	77
30	Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View. Trends in Genetics, 2016, 32, 496-507.	6.7	74
31	The Cell Cycle Program in Germ Cells of theDrosophilaEmbryo. Developmental Biology, 1998, 196, 160-170.	2.0	72
32	A universal target sequence is bound in vitro by diverse homeodomains. Mechanisms of Development, 1993, 43, 57-70.	1.7	70
33	TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in <i>Drosophila</i>	5.9	70
34	Anillin: a pivotal organizer of the cytokinetic machinery. Biochemical Society Transactions, 2008, 36, 439-441.	3.4	67
35	Mechanism and Regulation of Cdc25/Twine Protein Destruction in Embryonic Cell-Cycle Remodeling. Current Biology, 2013, 23, 118-126.	3.9	66
36	Quiescence: early evolutionary origins and universality do not imply uniformity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3498-3507.	4.0	65

#	Article	IF	Citations
37	Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in <i>Drosophila</i> . Genes and Development, 2019, 33, 403-417.	5.9	64
38	Rif1 prolongs the embryonic S phase at the Drosophila mid-blastula transition. PLoS Biology, 2018, 16, e2005687.	5.6	62
39	Embryonic onset of late replication requires Cdc25 down-regulation. Genes and Development, 2012, 26, 714-725.	5.9	61
40	<i>Drosophila wee $1 < l$i> Has an Essential Role in the Nuclear Divisions of Early Embryogenesis. Genetics, 2000, 155, 159-166.</i>	2.9	61
41	Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Endoreplication Cycles. Journal of Cell Biology, 1998, 140, 451-460.	5.2	59
42	Qualifying for the license to replicate. Cell, 1995, 81, 825-828.	28.9	57
43	Nitric oxide-induced suspended animation promotes survival during hypoxia. EMBO Journal, 2003, 22, 580-587.	7.8	57
44	The Degradation of Two Mitotic Cyclins Contributes to the Timing of Cytokinesis. Current Biology, 2003, 13, 373-383.	3.9	55
45	Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Mitotic Cycles. Journal of Cell Biology, 1997, 139, 13-21.	5.2	50
46	Mitotic Regulators Govern Progress through Steps in the Centrosome Duplication Cycle. Journal of Cell Biology, 1999, 147, 1371-1378.	5.2	50
47	Rux is a cyclin-dependent kinase inhibitor (CKI) specific for mitotic cyclin–Cdk complexes. Current Biology, 1999, 9, 1392-1402.	3.9	50
48	Big genes and little genes and deadlines for transcription. Nature, 1992, 359, 366-367.	27.8	45
49	Growing an Embryo from a Single Cell: A Hurdle in Animal Life: Figure 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a019042.	5.5	45
50	Drosophila grapes/CHK1 mutants are defective in cyclin proteolysis and coordination of mitotic events. Current Biology, 1999, 9, 919-S1.	3.9	44
51	DNA replication times the cell cycle and contributes to the mid-blastula transition in <i>Drosophila (i) embryos. Journal of Cell Biology, 2009, 187, 7-14.</i>	5.2	43
52	Cyclin B3 Is a Mitotic Cyclin that Promotes the Metaphase-Anaphase Transition. Current Biology, 2015, 25, 811-816.	3.9	43
53	Influence of cyclin type and dose on mitotic entry and progression in the early <i>Drosophila</i> embryo. Journal of Cell Biology, 2009, 184, 639-646.	5.2	42
54	Cdks and the Drosophila cell cycle. Current Opinion in Genetics and Development, 1997, 7, 17-22.	3.3	39

#	Article	IF	CITATIONS
55	The Mitochondrial DNA Polymerase Promotes Elimination of Paternal Mitochondrial Genomes. Current Biology, 2017, 27, 1033-1039.	3.9	39
56	An RNA Interference Screen Identifies a Novel Regulator of Target of Rapamycin That Mediates Hypoxia Suppression of Translation in <i>Drosophila </i>S2 Cells . Molecular Biology of the Cell, 2008, 19, 4051-4061.	2.1	35
57	Illuminating DNA replication during Drosophila development using TALE-lights. Current Biology, 2014, 24, R144-R145.	3.9	35
58	Connecting Cell Behavior to Patterning: Lessons from the Cell Cycle. Cell, 1997, 88, 309-314.	28.9	31
59	The preâ€omics era: The early days of twoâ€dimensional gels. Proteomics, 2008, 8, 4842-4852.	2.2	24
60	Sister Chromatids Fail to Separate during an Induced Endoreplication Cycle in Drosophila Embryos. Current Biology, 2002, 12, 829-833.	3.9	22
61	Interphase-arrestedÂDrosophilaÂembryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biology, 2020, 18, e3000891.	5.6	20
62	Phagocytosis of Candida albicans by RNAi-Treated Drosophila S2 Cells. Methods in Molecular Biology, 2009, 470, 347-358.	0.9	15
63	Chapter 27 The Use of Photoactivatable Reagents for the Study of Cell Lineage in Drosophila Embryogenesis. Methods in Cell Biology, 1994, 44, 533-543.	1.1	13
64	Different cyclin types collaborate to reverse the S-phase checkpoint and permit prompt mitosis. Journal of Cell Biology, 2012, 198, 973-980.	5.2	12
65	Two-Dimensional Gel Electrophoresis and the Beginning of Proteomics. Clinical Chemistry, 2014, 60, 1012-1013.	3.2	2