Seunghak Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040500/publications.pdf

Version: 2024-02-01

		567281	580821
37	653	15	25
papers	citations	h-index	g-index
37	37	37	841
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microplastic removal in conventional drinking water treatment processes: Performance, mechanism, and potential risk. Water Research, 2021, 202, 117417.	11.3	79
2	Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes. Advances in Water Resources, 2017, 106, 80-94.	3.8	59
3	Potential risks of TiO2 and ZnO nanoparticles released from sunscreens into outdoor swimming pools. Journal of Hazardous Materials, 2016, 317, 312-318.	12.4	52
4	Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au–Ag mine tailings. Journal of Hazardous Materials, 2015, 296, 147-157.	12.4	44
5	Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction. Chemosphere, 2014, 97, 146-152.	8.2	42
6	Identifying the source of Zn in soils around a Zn smelter using Pb isotope ratios and mineralogical analysis. Science of the Total Environment, 2017, 601-602, 66-72.	8.0	31
7	iron alginate beads11Abbreviations: CP – chlorophenol; DCP – dichlorophenol; MCP – monochlorophenol; n-ZVI – nanoscale zero-valent iron; Pd/nZVI – nanoscale palladium zero-valent iron; Pd/nZVI-A-O – nanoscale palladium zero-valent iron alginate beads; Pd/nZVI-A-O – oleic acid-coated nanoscale palladium zero-valent iron alginate beads; SRHA – Suwannee River humic acid: TCP –	12.4	29
8	trichlorophenol. Journal of Hazardous Materials. 2015, 293, 30-36. Effects of hydraulic loading rate and organic load on the performance of a pilot-scale hybrid VF-HF constructed wetland in treating secondary effluent. Chemosphere, 2019, 218, 232-240.	8.2	28
9	Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection. Water Resources Research, 2017, 53, 4444-4458.	4.2	26
10	Characterization of organic precursors in DBP formation and AOC in urban surface water and their fate during managed aquifer recharge. Water Research, 2017, 123, 75-85.	11.3	26
11	Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity andÂchoosing an optimal remediation strategy. Environmental Pollution, 2017, 226, 346-355.	7.5	22
12	Potential impact of pore-scale incomplete mixing on biodegradation in aquifers: From batch experiment to field-scale modeling. Advances in Water Resources, 2019, 123, 1-11.	3.8	22
13	Well radius of influence and radius of investigation: What exactly are they and how to estimate them?. Journal of Hydrology, 2020, 583, 124646.	5.4	21
14	Identification of the microbes mediating Fe reduction in a deep saline aquifer and their influence during managed aquifer recharge. Science of the Total Environment, 2016, 545-546, 486-492.	8.0	20
15	Effect of seepage velocity on the attachment efficiency of TiO2 nanoparticles in porous media. Journal of Hazardous Materials, 2014, 279, 163-168.	12.4	19
16	Theoretical Analysis of Groundwater Flow Patterns Near Stagnation Points. Water Resources Research, 2019, 55, 1624-1650.	4.2	15
17	Transient behavior of arsenic in vadose zone under alternating wet and dry conditions: A comparative soil column study. Journal of Hazardous Materials, 2022, 422, 126957.	12.4	15
18	TiO2 nanoparticle sorption to sand in the presence of natural organic matter. Environmental Earth Sciences, 2015, 73, 5585-5591.	2.7	11

#	Article	IF	CITATIONS
19	Identification of weathered multiple petroleum products in contaminated soils by characterizing unresolved complex mixture hump in gas chromatograph data. Science of the Total Environment, 2017, 607-608, 42-52.	8.0	11
20	Comparison of pre-oxidation between O3 and O3/H2O2 for subsequent managed aquifer recharge using laboratory-scale columns. Journal of Hazardous Materials, 2019, 377, 290-298.	12.4	11
21	Spatial distribution, mineralogy, and weathering of heavy metals in soils along zinc-concentrate ground transportation routes: implication for assessing heavy metal sources. Environmental Earth Sciences, 2017, 76, 1.	2.7	10
22	Spatiotemporal evolution of iron and sulfate concentrations during riverbank filtration: Field observations and reactive transport modeling. Journal of Contaminant Hydrology, 2020, 234, 103697.	3.3	8
23	Microfluidic pore model study of precipitates induced by the pore-scale mixing of an iron sulfate solution with simulated groundwater. Chemosphere, 2021, 271, 129857.	8.2	8
24	Identification of refined petroleum products in contaminated soils using an identification index for GC chromatograms. Environmental Science and Pollution Research, 2015, 22, 12029-12034.	5.3	7
25	What determines the efficacy of landfarming for petroleum-contaminated soils: Significance of contaminant characteristics. Chemosphere, 2022, 290, 133392.	8.2	7
26	Coupled effect of porous network and water content on the natural attenuation of diesel in unsaturated soils. Chemosphere, 2022, 302, 134804.	8.2	7
27	Zn speciation and fate in soils and sediments along the ground transportation route of Zn ore to a smelter. Journal of Hazardous Materials, 2022, 438, 129422.	12.4	6
28	Evolution of the radius of investigation during recovery tests. Journal of Hydrology, 2020, 590, 125346.	5.4	3
29	Influence of hydrogeological and operational parameters on well pumping capacity. Journal of Hydrology, 2022, 608, 127643.	5.4	3
30	Photosynthetic microalgaeâ€mediated transformation of hexahydroâ€1,3,5â€trinitroâ€1,3,5â€triazine under initially anaerobic conditions. Environmental Progress and Sustainable Energy, 2018, 37, 1677-1683.	2.3	2
31	Effects of variable-density flow on the value-of-information of pressure and concentration data for aquifer characterization. Advances in Water Resources, 2020, 135, 103468.	3.8	2
32	Identification of iron and sulfate release processes during riverbank filtration using chemical mass balance modeling. Environmental Geochemistry and Health, 2021, 43, 3583-3596.	3.4	2
33	Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate. Journal of Soil and Groundwater Environment, 2014, 19, 54-62.	0.1	2
34	Identifying Type of Refined Petroleum Products in Environmental Media: Thin-Layer Chromatography (TLC) as a Quick Methodology. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	1
35	Discrimination methods for diesel origin by analyzing fatty acid methyl ester (FAME) composition in diesel-contaminated soil. Scientific Reports, 2021, 11, 16245.	3.3	1
36	Aquifer-scale mapping of injection capacity for potential aquifer storage and recovery sites: Methodology development and case studies in Minnesota, USA. Journal of Hydrology: Regional Studies, 2022, 40, 101048.	2.4	1

#	#	Article	lF	CITATIONS
ć	37	Modified approach for estimating geogenic Pb isotope ratios in soils for metal source apportionment. Environmental Earth Sciences, 2020, 79, 1.	2.7	0