Thomas R Malek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040409/publications.pdf

Version: 2024-02-01

84 papers

8,140 citations

71102 41 h-index 71685 **76** g-index

84 all docs

84 docs citations

84 times ranked 9245 citing authors

#	Article	IF	Citations
1	Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nature Reviews Immunology, 2022, 22, 614-628.	22.7	110
2	Dynamic transcriptional activity and chromatin remodeling of regulatory T cells after varied duration of interleukin-2 receptor signaling. Nature Immunology, 2022, 23, 802-813.	14.5	13
3	Fueling Cancer Vaccines to Improve T Cell-Mediated Antitumor Immunity. Frontiers in Oncology, 2022, 12, .	2.8	4
4	Sustained IL-2R signaling of limited duration by high-dose mIL-2/mCD25 fusion protein amplifies tumor-reactive CD8+ T cells to enhance antitumor immunity. Cancer Immunology, Immunotherapy, 2021, 70, 909-921.	4.2	12
5	Mouse IL-2/CD25 Fusion Protein Induces Regulatory T Cell Expansion and Immune Suppression in Preclinical Models of Systemic Lupus Erythematosus. Journal of Immunology, 2021, 207, 34-43.	0.8	15
6	High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4 ⁺ and CD8 ⁺ neoantigen-specific T cells to promote antitumor immunity., 2021, 9, e002865.		16
7	Mobilized Mouse and Human Peripheral Blood Containing Elevated Numbers of Donor Treg Cells Ameliorates Pre-Clinical GvHD and GVL Is Maintained in an MHC-Matched Allogeneic Murine Model. Blood, 2021, 138, 2767-2767.	1.4	O
8	Medical Treatment Can Unintentionally Alter the Regulatory T-Cell Compartment in Patients with Widespread Pathophysiologic Conditions. American Journal of Pathology, 2020, 190, 2000-2012.	3.8	6
9	Persistent IL-2 Receptor Signaling by IL-2/CD25 Fusion Protein Controls Diabetes in NOD Mice by Multiple Mechanisms. Diabetes, 2020, 69, 2400-2413.	0.6	26
10	Acute Lipopolysaccharide-Induced Inflammation Lowers IL-2R Signaling and the Proliferative Potential of Regulatory T Cells. ImmunoHorizons, 2020, 4, 809-824.	1.8	4
11	CD25 and Protein Phosphatase 2A Cooperate to Enhance IL-2R Signaling in Human Regulatory T Cells. Journal of Immunology, 2019, 203, 93-104.	0.8	13
12	Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. Nature Communications, 2019, 10, 1037.	12.8	71
13	Cytokine Signaling in the Development and Homeostasis of Regulatory T cells. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028597.	5.5	54
14	IL-2/CD25: A Long-Acting Fusion Protein That Promotes Immune Tolerance by Selectively Targeting the IL-2 Receptor on Regulatory T Cells. Journal of Immunology, 2018, 201, 2579-2592.	0.8	63
15	Regulatory T cells in the treatment of disease. Nature Reviews Drug Discovery, 2018, 17, 823-844.	46.4	224
16	Interleukin 2. , 2018, , 2687-2695.		0
17	The Lower Limit of Regulatory CD4+ Foxp3+ $TCR\hat{l}^2$ Repertoire Diversity Required To Control Autoimmunity. Journal of Immunology, 2017, 198, 3127-3135.	0.8	12
18	Transient mitochondrial DNA double strand breaks in mice cause accelerated aging phenotypes in a ROS-dependent but p53/p21-independent manner. Cell Death and Differentiation, 2017, 24, 288-299.	11.2	43

#	Article	IF	Citations
19	Altered homeostasis and development of regulatory T cell subsets represent an IL-2R–dependent risk for diabetes in NOD mice. Science Signaling, 2017, 10, .	3.6	12
20	Interleukin 2., 2017, , 1-9.		0
21	Promoting Immune Regulation in Type 1 Diabetes Using Low-Dose Interleukin-2. Current Diabetes Reports, 2016, 16, 46.	4.2	50
22	Developmental Progression and Interrelationship of Central and Effector Regulatory T Cell Subsets. Journal of Immunology, 2016, 196, 3665-3676.	0.8	26
23	Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. Journal of Autoimmunity, 2015, 58, 48-58.	6.5	214
24	Selective IL-2 Responsiveness of Regulatory T Cells Through Multiple Intrinsic Mechanisms Supports the Use of Low-Dose IL-2 Therapy in Type 1 Diabetes. Diabetes, 2015, 64, 2172-2183.	0.6	170
25	IL-2Rβ–Dependent Signaling and CD103 Functionally Cooperate To Maintain Tolerance in the Gut Mucosa. Journal of Immunology, 2015, 194, 1334-1346.	0.8	22
26	The importance of regulatory Tâ€cell heterogeneity in maintaining selfâ€tolerance. Immunological Reviews, 2014, 259, 103-114.	6.0	87
27	IL-2R Signaling Is Essential for Functional Maturation of Regulatory T Cells during Thymic Development. Journal of Immunology, 2013, 190, 1567-1575.	0.8	87
28	The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunologic Research, 2013, 57, 197-209.	2.9	76
29	IL7Rα Contributes to Experimental Autoimmune Encephalomyelitis through Altered T Cell Responses and Nonhematopoietic Cell Lineages. Journal of Immunology, 2013, 190, 4525-4534.	0.8	29
30	Transient Enhanced IL-2R Signaling Early during Priming Rapidly Amplifies Development of Functional CD8+ T Effector-Memory Cells. Journal of Immunology, 2012, 189, 4321-4330.	0.8	17
31	IL-2 Receptor Signaling Is Essential for the Development of Klrg1+ Terminally Differentiated T Regulatory Cells. Journal of Immunology, 2012, 189, 1780-1791.	0.8	99
32	Cellular and molecular determinants for the development of natural and induced regulatory T cells. Human Immunology, 2012, 73, 773-782.	2.4	30
33	IL-2: Fine-tuning the Germinal Center Reaction. Immunity, 2012, 36, 702-704.	14.3	3
34	Tâ€cell tolerance and the multiâ€functional role of ILâ€2R signaling in Tâ€regulatory cells. Immunological Reviews, 2011, 241, 63-76.	6.0	180
35	Expansion of a restricted residual host T _{reg} â€cell repertoire is dependent on ILâ€2 following experimental autologous hematopoietic stem transplantation. European Journal of Immunology, 2011, 41, 3467-3478.	2.9	12
36	Low-dose IL-2 as a therapeutic agent for tolerance induction. Immunotherapy, 2011, 3, 1281-1284.	2.0	6

#	Article	IF	CITATIONS
37	The Basis of Distinctive IL-2– and IL-15–Dependent Signaling: Weak CD122-Dependent Signaling Favors CD8+ T Central-Memory Cell Survival but Not T Effector-Memory Cell Development. Journal of Immunology, 2011, 187, 5170-5182.	0.8	58
38	Allogeneic T regulatory cell–mediated transplantation tolerance in adoptive therapy depends on dominant peripheral suppression and central tolerance. Blood, 2010, 115, 1932-1940.	1.4	18
39	Interleukin-2 Receptor Signaling: At the Interface between Tolerance and Immunity. Immunity, 2010, 33, 153-165.	14.3	654
40	CD4+ CD25+ Foxp3+ T Regulatory Cells with Limited TCR Diversity in Control of Autoimmunity. Journal of Immunology, 2010, 184, 56-66.	0.8	37
41	Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. Journal of Clinical Investigation, 2010, 120, 3629-3640.	8.2	143
42	A Low Interleukin-2 Receptor Signaling Threshold Supports the Development and Homeostasis of T Regulatory Cells. Immunity, 2009, 30, 204-217.	14.3	235
43	Host CD4+CD25+ T cells can expand and comprise a major component of the Treg compartment after experimental HCT. Blood, 2009, 113, 733-743.	1.4	46
44	IL-2 Family of Cytokines in T Regulatory Cell Development and Homeostasis. Journal of Clinical Immunology, 2008, 28, 635-639.	3.8	89
45	The Biology of Interleukin-2. Annual Review of Immunology, 2008, 26, 453-479.	21.8	899
46	A Function for IL-7R for CD4+CD25+Foxp3+ T Regulatory Cells. Journal of Immunology, 2008, 181, 225-234.	0.8	118
47	The Role of IL-2 in the Development and Peripheral Homeostasis of Naturally Occurring CD4 + CD25 + Foxp3 + Regulatory T Cells. , 2008, , 57-76.		1
48	Cytolytically Defective Tregs Can Prevent Spontaneous Autoimmune Disease and Gvhd, but Fail to Suppress Autochthonous Lymphoproliferation. Blood, 2008, 112, 3518-3518.	1.4	0
49	Function of the IL-2R for Thymic and Peripheral CD4+CD25+ Foxp3+ T Regulatory Cells. Journal of Immunology, 2007, 178, 4062-4071.	0.8	142
50	Cytokine-Dependent Blimp-1 Expression in Activated T Cells Inhibits IL-2 Production. Journal of Immunology, 2007, 178, 242-252.	0.8	165
51	Nonâ€redundant role for ILâ€7R signaling for the survival of CD8 ⁺ memory T cells. European Journal of Immunology, 2007, 37, 3078-3088.	2.9	38
52	Surviving Host CD4+CD25+Foxp3+ Cells Following Ablative Conditioning Expand and Comprise the Major Component of the Treg Compartment during the Lymphoid Reconstitution Period Following HCT Blood, 2007, 110, 65-65.	1.4	1
53	Quantitative assessment concerning the contribution of IL-2R \hat{A} for superantigen-mediated T cell responses in vivo. International Immunology, 2006, 18, 565-572.	4.0	14
54	Selective Availability of IL-2 Is a Major Determinant Controlling the Production of CD4+CD25+Foxp3+ T Regulatory Cells. Journal of Immunology, 2006, 177, 5115-5121.	0.8	56

#	Article	IF	CITATIONS
55	Cutting Edge: Allogeneic CD4+CD25+Foxp3+ T Regulatory Cells Suppress Autoimmunity while Establishing Transplantation Tolerance. Journal of Immunology, 2006, 176, 7149-7153.	0.8	66
56	Redundant and unique regulation of activated mouse B lymphocytes by IL-4 and IL-21. Journal of Leukocyte Biology, 2006, 80, 1416-1423.	3.3	33
57	Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. Journal of Experimental Medicine, 2005, 201, 769-777.	8.5	218
58	Initial Antigen Encounter Programs CD8+ T Cells Competent to Develop into Memory Cells That Are Activated in an Antigen-Free, IL-7- and IL-15-Rich Environment. Journal of Immunology, 2004, 172, 7315-7323.	0.8	87
59	Distinct Activation Signals Determine whether IL-21 Induces B Cell Costimulation, Growth Arrest, or Bim-Dependent Apoptosis. Journal of Immunology, 2004, 173, 657-665.	0.8	243
60	Tolerance, not immunity, crucially depends on IL-2. Nature Reviews Immunology, 2004, 4, 665-674.	22.7	733
61	IL-7: a limited resource during thymopoiesis. Blood, 2004, 104, 3842-3842.	1.4	0
62	The main function of IL-2 is to promote the development of T regulatory cells. Journal of Leukocyte Biology, 2003, 74, 961-965.	3.3	264
63	Efficient Induction of Primary and Secondary T Cell-Dependent Immune Responses In Vivo in the Absence of Functional IL-2 and IL-15 Receptors. Journal of Immunology, 2003, 170, 236-242.	0.8	52
64	CD4 Regulatory T Cells Prevent Lethal Autoimmunity in IL-2Rβ-Deficient Mice. Immunity, 2002, 17, 167-178.	14.3	730
65	T helper cells, IL-2 and the generation of cytotoxic T-cell responses. Trends in Immunology, 2002, 23, 465-467.	6.8	37
66	Measurement of Lymphokine Receptors. , 2001, Chapter 6, Unit 6.1.		1
67	IL-15 and IL-2: a matter of life and death for T cells in vivo. Nature Medicine, 2001, 7, 114-118.	30.7	283
68	Control of T Cell Development In Vivo by Subdomains Within the IL-7 Receptor α-Chain Cytoplasmic Tail. Journal of Immunology, 2001, 166, 262-269.	0.8	34
69	IL-2 During In Vitro Priming Promotes Subsequent Engraftment and Successful Adoptive Tumor Immunotherapy by Persistent Memory Phenotypic CD8+ T Cells. Journal of Immunology, 2001, 167, 4511-4517.	0.8	20
70	The Proteasome Regulates Receptor-mediated Endocytosis of Interleukin-2. Journal of Biological Chemistry, 2001, 276, 381-385.	3.4	97
71	Broad Programming by IL-2 Receptor Signaling for Extended Growth to Multiple Cytokines and Functional Maturation of Antigen-Activated T Cells. Journal of Immunology, 2001, 166, 1675-1683.	0.8	81
72	Genomic organization and $5\hat{a}\in^2$ regulatory region of the mouse IL-2 receptor \hat{l}^2 -chain gene (IL-2Rb). Immunogenetics, 2000, 51, 508-512.	2.4	3

#	Article	IF	CITATIONS
73	Reversal of CD8+ T Cell Ignorance and Induction of Anti-Tumor Immunity by Peptide-Pulsed APC. Journal of Immunology, 2000, 165, 6731-6737.	0.8	40
74	Normal Lymphoid Homeostasis and Lack of Lethal Autoimmunity in Mice Containing Mature T Cells with Severely Impaired IL-2 Receptors. Journal of Immunology, 2000, 164, 2905-2914.	0.8	144
75	Efficient Internalization of IL-2 Depends on the Distal Portion of the Cytoplasmic Tail of the IL-2R Common Î ³ -Chain and a Lymphoid Cell Environment. Journal of Immunology, 2000, 165, 2556-2562.	0.8	31
76	Thymic and intestinal intraepithelial T lymphocyte development are each regulated by thel³c-dependent cytokines IL-2, IL-7, and IL-15. Seminars in Immunology, 2000, 12, 465-474.	5.6	36
77	Prostaglandin E2 inhibits T cell activation-induced apoptosis and Fas-mediated cellular cytotoxicity by blockade of Fas-ligand induction. European Journal of Immunology, 1999, 29, 2360-2365.	2.9	46
78	The Structure and Function of $\hat{I}^3 \tilde{N}$ -Dependent Cytokines and Receptors: Regulation of T Lymphocyte Development and Homeostasis. Critical Reviews in Immunology, 1998, 18, 503-524.	0.5	80
79	Regulation of Fas-dependent activation-induced T cell apoptosis by cAMP signaling: a potential role for transcription factor NF-κB. Oncogene, 1997, 14, 2455-2464.	5.9	71
80	Biochemical Identity and Characterization of the Mouse Interleukin-2 Receptor \hat{l}^2 and \hat{l}^3 c Subunits. Journal of Interferon and Cytokine Research, 1995, 15, 447-454.	1.2	14
81	Pleiotropic effects of Bcl-2 on transcription factors in T cells: potential role of NF-KB p50–p50 for the anti-apoptotic function of Bcl-2. International Immunology, 1995, 7, 1709-1720.	4.0	47
82	Selection of internalization-deficient cells by interleukin-2-Pseudomonas exotoxin chimeric protein: the cytoplasmic domain of the interleukin-2 receptor \hat{l}^2 chain does not contribute to internalization of interleukin-2. European Journal of Immunology, 1993, 23, 3181-3188.	2.9	12
83	Monoclonal antibodies identify three epitope clusters on the mouse p55 subunit of the interleukin 2 receptor: relationship to the interleukin 2-binding site. European Journal of Immunology, 1987, 17, 929-935.	2.9	90
84	The Murine Interleukinâ€⊋ Receptor: Biochemical Structure and Regulation of Expression. Immunological Reviews, 1986, 92, 81-102.	6.0	27