Youjun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10403875/publications.pdf Version: 2024-02-01

VOLUMELI

#	Article	IF	CITATIONS
1	P53 deficiency affects cholesterol esterification to exacerbate hepatocarcinogenesis. Hepatology, 2023, 77, 1499-1511.	7.3	28
2	Ceramide-mediated gut dysbiosis enhances cholesterol esterification and promotes colorectal tumorigenesis in mice. JCl Insight, 2022, 7, .	5.0	18
3	Platelet phagocytosis by leukocytes in a patient with cerebral hemorrhage and thrombocytopenia caused by gram-negative bacterial infection. Journal of International Medical Research, 2022, 50, 030006052210791.	1.0	0
4	The IKKβâ€USP30â€ACLY Axis Controls Lipogenesis and Tumorigenesis. Hepatology, 2021, 73, 160-174.	7.3	61
5	FBXL6 degrades phosphorylated p53 to promote tumor growth. Cell Death and Differentiation, 2021, 28, 2112-2125.	11.2	17
6	USP19 exacerbates lipogenesis and colorectal carcinogenesis by stabilizing ME1. Cell Reports, 2021, 37, 110174.	6.4	15
7	The MAP3K13-TRIM25-FBXW7α axis affects c-Myc protein stability and tumor development. Cell Death and Differentiation, 2020, 27, 420-433.	11.2	44
8	Comprehensive characterization of the rRNA metabolism-related genes in human cancer. Oncogene, 2020, 39, 786-800.	5.9	41
9	LINC00265 promotes colorectal tumorigenesis via ZMIZ2 and USP7-mediated stabilization of β-catenin. Cell Death and Differentiation, 2020, 27, 1316-1327.	11.2	55
10	Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Molecular Cell, 2020, 77, 138-149.e5.	9.7	63
11	Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene, 2020, 39, 2437-2449.	5.9	71
12	Continuousâ€ŧime causal mediation analysis. Statistics in Medicine, 2019, 38, 4334-4347.	1.6	5
13	The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell Death and Disease, 2018, 9, 482.	6.3	50
14	Amplification of Glyceronephosphate O-Acyltransferase and Recruitment of USP30 Stabilize DRP1 to Promote Hepatocarcinogenesis. Cancer Research, 2018, 78, 5808-5819.	0.9	37
15	TRIM27 mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis. Nature Communications, 2018, 9, 3441.	12.8	52
16	MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1. Cell Death and Differentiation, 2017, 24, 1253-1262.	11.2	38
17	miR-148a inhibits colitis and colitis-associated tumorigenesis in mice. Cell Death and Differentiation, 2017, 24, 2199-2209.	11.2	62
18	Supplementation with the Methyl Donor Betaine Prevents Congenital Defects Induced by Prenatal Alcohol Exposure. Alcoholism: Clinical and Experimental Research, 2017, 41, 1917-1927.	2.4	28

Youjun Li

#	Article	IF	CITATIONS
19	MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice. Cell Death and Disease, 2017, 8, e2916-e2916.	6.3	49
20	Ribosomopathy-like properties of murine and human cancers. PLoS ONE, 2017, 12, e0182705.	2.5	29
21	microRNA-129-5p, a c-Myc negative target, affects hepatocellular carcinoma progression by blocking the Warburg effect. Journal of Molecular Cell Biology, 2016, 8, 400-410.	3.3	47
22	MicroRNA-Based Screens for Synthetic Lethal Interactions with c-Myc. RNA & Disease (Houston, Tex), 2016, 3, .	1.0	7
23	microRNA-206 impairs c-Myc-driven cancer in a synthetic lethal manner by directly inhibiting MAP3K13. Oncotarget, 2016, 7, 16409-16419.	1.8	25
24	Upregulation of miR-362-3p Modulates Proliferation and Anchorage-Independent Growth by Directly Targeting Tob2 in Hepatocellular Carcinoma. Journal of Cellular Biochemistry, 2015, 116, 1563-1573.	2.6	36
25	Aurora kinase A mediates câ€Myc's oncogenic effects in hepatocellular carcinoma. Molecular Carcinogenesis, 2015, 54, 1467-1479.	2.7	38
26	A c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology, 2013, 57, 2378-2389.	7.3	80
27	The c-Myc Target Glycoprotein1bα Links Cytokinesis Failure to Oncogenic Signal Transduction Pathways in Cultured Human Cells. PLoS ONE, 2010, 5, e10819.	2.5	2
28	Widespread Genomic Instability Mediated by a Pathway Involving Glycoprotein Ibα and Aurora B Kinase. Journal of Biological Chemistry, 2010, 285, 13183-13192.	3.4	9
29	Modularity of the Oncoprotein-like Properties of Platelet Glycoprotein Ibα. Journal of Biological Chemistry, 2009, 284, 1410-1418.	3.4	8
30	The Ever Expanding Role for c-Myc in Promoting Genomic Instability. Cell Cycle, 2007, 6, 1024-1029.	2.6	62
31	Dual Role for SUMO E2 Conjugase Ubc9 in Modulating the Transforming and Growth-promoting Properties of the HMGA1b Architectural Transcription Factor. Journal of Biological Chemistry, 2007, 282, 13363-13371.	3.4	18
32	c-Myc-mediated genomic instability proceeds via a megakaryocytic endomitosis pathway involving Gp1bÂ. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3490-3495.	7.1	19
33	The Negative c-Myc Target Onzin Affects Proliferation and Apoptosis via Its Obligate Interaction with Phospholipid Scramblase I. Molecular and Cellular Biology, 2006, 26, 3401-3413.	2.3	47
34	Onzin, a c-Myc-repressed target, promotes survival and transformation by modulating the Akt–Mdm2–p53 pathway. Oncogene, 2005, 24, 7524-7541.	5.9	95
35	Molecular cloning and characterization of LCRG1, a novel gene localized to the tumor suppressor locus D17S800–D17S930. Cancer Letters, 2004, 209, 75-85.	7.2	23