
MarÃ-a Dolores RoldÃ;n Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040316/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of pH on the denitrification proteome of the soil bacterium Paracoccus denitrificans PD1222. Scientific Reports, 2021, 11, 17276.	3.3	18
2	Bioremediation of cyanide ontaining wastes. EMBO Reports, 2021, 22, e53720.	4.5	8
3	Alternative Pathway for 3-Cyanoalanine Assimilation in Pseudomonas pseudoalcaligenes CECT5344 under Noncyanotrophic Conditions. Microbiology Spectrum, 2021, 9, e0077721.	3.0	3
4	Role of the Dihydrodipicolinate Synthase DapA1 on Iron Homeostasis During Cyanide Assimilation by the Alkaliphilic Bacterium Pseudomonas pseudoalcaligenes CECT5344. Frontiers in Microbiology, 2020, 11, 28.	3.5	10
5	Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the cyn Gene Cluster. International Journal of Molecular Sciences, 2019, 20, 3008.	4.1	20
6	Putative small RNAs controlling detoxification of industrial cyanide-containing wastewaters by Pseudomonas pseudoalcaligenes CECT5344. PLoS ONE, 2019, 14, e0212032.	2.5	20
7	Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications. FEMS Microbiology Letters, 2018, 365, .	1.8	28
8	Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222. FEMS Microbiology Letters, 2018, 365, .	1.8	17
9	Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Applied Microbiology and Biotechnology, 2018, 102, 1067-1074.	3.6	71
10	Editorial to the thematic issue new insights into the nitrogen cycle. FEMS Microbiology Letters, 2018, 365, .	1.8	0
11	Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222. Frontiers in Microbiology, 2018, 9, 1137.	3.5	41
12	Transcriptional and translational adaptation to aerobic nitrate anabolism in the denitrifier <i>Paracoccus denitrificans</i> . Biochemical Journal, 2017, 474, 1769-1787.	3.7	24
13	The <scp><i>P</i></scp> <i>aracoccus denitrificans</i> <scp>N</scp> ar <scp>K</scp> â€like nitrate and nitrite transporters— probing nitrate uptake and nitrate/nitrite exchange mechanisms. Molecular Microbiology, 2017, 103, 117-133.	2.5	30
14	Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants. New Biotechnology, 2017, 35, 35-41.	4.4	7
15	Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS). PLoS ONE, 2017, 12, e0172908.	2.5	25
16	Finished genome sequence and methylome of the cyanide-degrading Pseudomonas pseudoalcaligenes strain CECT5344 as resolved by single-molecule real-time sequencing. Journal of Biotechnology, 2016, 232, 61-68.	3.8	20
17	Biodegradation of cyanide wastes from mining and jewellery industries. Current Opinion in Biotechnology, 2016, 38, 9-13.	6.6	106
18	Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity. Microbial Cell Factories, 2015, 14, 77.	4.0	18

#	Article	IF	CITATIONS
19	DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater. Journal of Biotechnology, 2015, 214, 171-181.	3.8	25
20	Spatial memory alterations in children with epilepsy of genetic origin or unknown cause. Epileptic Disorders, 2014, 16, 203-207.	1.3	28
21	Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344. Journal of Biotechnology, 2014, 175, 67-68.	3.8	28
22	Draft whole genome sequence of the cyanideâ€degrading bacterium <i><scp>P</scp>seudomonas pseudoalcaligenes</i> <scp>CECT</scp> 5344. Environmental Microbiology, 2013, 15, 253-270.	3.8	38
23	Genetic Relationships in an International Collection of <i>Puccinia horiana</i> Isolates Based on Newly Identified Molecular Markers and Demonstration of Recombination. Phytopathology, 2013, 103, 1169-1179.	2.2	6
24	Nitrogen Oxyanion-dependent Dissociation of a Two-component Complex That Regulates Bacterial Nitrate Assimilation. Journal of Biological Chemistry, 2013, 288, 29692-29702.	3.4	29
25	The <i>nit1C</i> gene cluster of <i>Pseudomonas pseudoalcaligenes</i> CECT5344 involved in assimilation of nitriles is essential for growth on cyanide. Environmental Microbiology Reports, 2012, 4, 326-334.	2.4	29
26	Spatial navigation impairment in patients with refractory temporal lobe epilepsy: Evidence from a new virtual reality-based task. Epilepsy and Behavior, 2011, 22, 364-369.	1.7	44
27	A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by <i>Paracoccus denitrificans</i> . Biochemical Journal, 2011, 435, 743-753.	3.7	55
28	Bacterial nitrate assimilation: gene distribution and regulation. Biochemical Society Transactions, 2011, 39, 1838-1843.	3.4	112
29	Electron transfer to the active site of the bacterial nitric oxide reductase is controlled by ligand binding to heme b3. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 451-457.	1.0	15
30	Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph. Biochemical Society Transactions, 2011, 39, 269-274.	3.4	43
31	Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate : quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain. Microbiology (United) Tj ETQq1 1 C).7 84 314 r	gBI /Overloo
32	Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. Journal of Hazardous Materials, 2010, 179, 72-78.	12.4	98
33	Virtual reality tasks disclose spatial memory alterations in fibromyalgia. Rheumatology, 2009, 48, 1273-1278.	1.9	31
34	Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiology Reviews, 2008, 32, 474-500.	8.6	339
35	The NprA nitroreductase required for 2,4â€dinitrophenol reduction in <i>Rhodobacter capsulatus</i> is a dihydropteridine reductase. Environmental Microbiology, 2008, 10, 3174-3183.	3.8	14
36	Characterization of the <i>Pseudomonas pseudoalcaligenes</i> CECT5344 Cyanase, an Enzyme That Is Not Essential for Cyanide Assimilation. Applied and Environmental Microbiology, 2008, 74, 6280-6288.	3.1	54

#	Article	lF	CITATIONS
37	The cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344 responds to cyanide by defence mechanisms against iron deprivation, oxidative damage and nitrogen stress. Environmental Microbiology, 2007, 9, 1541-1549.	3.8	27
38	The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochemical Society Transactions, 2006, 34, 127-129.	3.4	33
39	Interactions Between Nitrate Assimilation and 2,4-Dinitrophenol Cometabolism in Rhodobacter capsulatus E1F1. Current Microbiology, 2006, 53, 37-42.	2.2	9
40	Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Archives of Microbiology, 2006, 186, 339-344.	2.2	22
41	Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochemical Society Transactions, 2005, 33, 168-169.	3.4	47
42	Regulation and Characterization of Two Nitroreductase Genes, nprA and nprB , of Rhodobacter capsulatus. Applied and Environmental Microbiology, 2005, 71, 7643-7649.	3.1	17
43	Bacterial Degradation of Cyanide and Its Metal Complexes under Alkaline Conditions. Applied and Environmental Microbiology, 2005, 71, 940-947.	3.1	121
44	Nitrate reduction and the nitrogen cycle in archaea. Microbiology (United Kingdom), 2004, 150, 3527-3546.	1.8	289
45	Hydroxylamine Assimilation by Rhodobacter capsulatus E1F1. Journal of Biological Chemistry, 2004, 279, 45485-45494.	3.4	65
46	NapF Is a Cytoplasmic Iron-Sulfur Protein Required for Fe-S Cluster Assembly in the Periplasmic Nitrate Reductase. Journal of Biological Chemistry, 2004, 279, 49727-49735.	3.4	36
47	Spectral Properties of Bacterial Nitric-oxide Reductase. Journal of Biological Chemistry, 2002, 277, 20146-20150.	3.4	38
48	Regulation of nap Gene Expression and Periplasmic Nitrate Reductase Activity in the Phototrophic Bacterium Rhodobacter sphaeroides DSM158. Journal of Bacteriology, 2002, 184, 1693-1702.	2.2	48
49	Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Biochemical Journal, 2002, 368, 425-432.	3.7	40
50	A Low-Redox Potential Heme in the Dinuclear Center of Bacterial Nitric Oxide Reductase: Implications for the Evolution of Energy-Conserving Hemeâ^'Copper Oxidases. Biochemistry, 1999, 38, 13780-13786.	2.5	102
51	Spectroscopic Characterization of a Novel Multihemec-Type Cytochrome Widely Implicated in Bacterial Electron Transport. Journal of Biological Chemistry, 1998, 273, 28785-28790.	3.4	129
52	The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. Biochemical Society Transactions, 1998, 26, 401-408.	3.4	62
53	Degradation of p -nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Archives of Microbiology, 1997, 169, 36-42.	2.2	46
54	Molecular and Regulatory Properties of the Nitrate Reducing Systems of Rhodobacter. Current Microbiology, 1996, 33, 341-346.	2.2	28

#	Article	IF	CITATIONS
55	Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Molecular Microbiology, 1996, 19, 1307-1318.	2.5	104
56	Chlorate and nitrate reduction in the phototrophic bacteriaRhodobacter capsulatus andRhodobacter sphaeroides. Current Microbiology, 1994, 29, 241-245.	2.2	63
57	Effect of xenobiotics on inorganic nitrogen assimilation by the phototrophic bacteriumRhodobacter capsulatus E1F1. Current Microbiology, 1994, 29, 119-122.	2.2	11
58	Effect of sodium chloride on growth, ion content, and hydrogen ion extrusion activity of sunflower and jojoba roots. Journal of Plant Nutrition, 1993, 16, 1047-1058.	1.9	8
59	Effects of Boron on Proton Transport and Membrane Properties of Sunflower (Helianthus annuus L.) Cell Microsomes. Plant Physiology, 1993, 103, 763-769.	4.8	51
60	In vivo and in vitro effects of boron on the plasma membrane proton pump of sunflower roots. Physiologia Plantarum, 1992, 84, 49-54.	5.2	42