
Stephan P Swinnen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040112/publications.pdf Version: 2024-02-01

STEDHAN D SMINNEN

#	Article	IF	CITATIONS
1	Age-Related Differences of Frequency-Dependent Functional Connectivity in Brain Networks and Their Link to Motor Performance. Brain Connectivity, 2022, 12, 686-698.	1.7	6
2	The role of MRS-assessed GABA in human behavioral performance. Progress in Neurobiology, 2022, 212, 102247.	5.7	19
3	Normal aging affects unconstrained three-dimensional reaching against gravity with reduced vertical precision and increased co-contraction: a pilot study. Experimental Brain Research, 2022, 240, 1029.	1.5	2
4	Network-specific differences in transient brain activity at rest are associated with age-related reductions in motor performance. NeuroImage, 2022, 252, 119025.	4.2	0
5	Task-Related Modulation of Sensorimotor GABA+ Levels in Association with Brain Activity and Motor Performance: A Multimodal MRS–fMRI Study in Young and Older Adults. Journal of Neuroscience, 2022, 42, 1119-1130.	3.6	2
6	Connectivity in Large-Scale Resting-State Brain Networks Is Related to Motor Learning: A High-Density EEG Study. Brain Sciences, 2022, 12, 530.	2.3	2
7	The interaction between endogenous GABA, functional connectivity, and behavioral flexibility is critically altered with advanced age. Communications Biology, 2022, 5, 426.	4.4	3
8	RT-NET: real-time reconstruction of neural activity using high-density electroencephalography. Neuroinformatics, 2021, 19, 251-266.	2.8	7
9	Age-related GABAergic differences in the primary sensorimotor cortex: A multimodal approach combining PET, MRS and TMS. NeuroImage, 2021, 226, 117536.	4.2	18
10	Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients. NeuroImage: Clinical, 2021, 30, 102621.	2.7	12
11	Dissociating the causal role of left and right dorsal premotor cortices in planning and executing bimanual movements – A neuro-navigated rTMS study. Brain Stimulation, 2021, 14, 423-434.	1.6	14
12	GABA levels are differentially associated with bimanual motor performance in older as compared to young adults. NeuroImage, 2021, 231, 117871.	4.2	16
13	High-Order Interdependencies in the Aging Brain. Brain Connectivity, 2021, 11, 734-744.	1.7	29
14	Cognition and action: a latent variable approach to study contributions of executive functions to motor control in older adults. Aging, 2021, 13, 15942-15963.	3.1	11
15	Hippocampal and striatal responses during motor learning are modulated by prefrontal cortex stimulation. Neurolmage, 2021, 237, 118158.	4.2	13
16	Perturbation of cortical activity elicits regional and age-dependent effects on unconstrained reaching behavior: a pilot study. Experimental Brain Research, 2021, 239, 3585-3600.	1.5	2
17	A role for GABA in the modulation of striatal and hippocampal systems under stress. Communications Biology, 2021, 4, 1033.	4.4	7
18	Small variation in dynamic functional connectivity in cerebellar networks. Neurocomputing, 2021, 461, 751-761.	5.9	9

#	Article	IF	CITATIONS
19	Indices of callosal axonal density and radius from diffusion MRI relate to upper and lower limb motor performance. NeuroImage, 2021, 241, 118433.	4.2	2
20	Neurophysiological modulations in the (pre)motor-motor network underlying age-related increases in reaction time and the role of GABA levels – a bimodal TMS-MRS study. NeuroImage, 2021, 243, 118500.	4.2	9
21	Frequency drift in MR spectroscopy at 3T. NeuroImage, 2021, 241, 118430.	4.2	28
22	Prefronto-Striatal Structural Connectivity Mediates Adult Age Differences in Action Selection. Journal of Neuroscience, 2021, 41, 331-341.	3.6	9
23	Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Frontiers in Human Neuroscience, 2021, 15, 721206.	2.0	33
24	Prefrontal stimulation prior to motor sequence learning alters multivoxel patterns in the striatum and the hippocampus. Scientific Reports, 2021, 11, 20572.	3.3	6
25	Retention of touchscreen skills is compromised in Parkinson's disease. Behavioural Brain Research, 2020, 378, 112265.	2.2	8
26	Task-related measures of short-interval intracortical inhibition and GABA levels in healthy young and older adults: A multimodal TMS-MRS study. NeuroImage, 2020, 208, 116470.	4.2	35
27	Neurometabolic Correlates of Reactive and Proactive Motor Inhibition in Young and Older Adults: Evidence from Multiple Regional 1H-MR Spectroscopy. Cerebral Cortex Communications, 2020, 1, tgaa028.	1.6	7
28	Lateralized effects of post-learning transcranial direct current stimulation on motor memory consolidation in older adults: An fMRI investigation. NeuroImage, 2020, 223, 117323.	4.2	12
29	Frequencyâ€dependent functional connectivity in resting state networks. Human Brain Mapping, 2020, 41, 5187-5198.	3.6	43
30	The role of the PMd in task complexity: functional connectivity is modulated by motor learning and age. Neurobiology of Aging, 2020, 92, 12-27.	3.1	6
31	Induced Suppression of the Left Dorsolateral Prefrontal Cortex Favorably Changes Interhemispheric Communication During Bimanual Coordination in Older Adults–A Neuronavigated rTMS Study. Frontiers in Aging Neuroscience, 2020, 12, 149.	3.4	11
32	Baseline sensorimotor GABA levels shape neuroplastic processes induced by motor learning in older adults. Human Brain Mapping, 2020, 41, 3680-3695.	3.6	21
33	Skill acquisition is enhanced by reducing trial-to-trial repetition. Journal of Neurophysiology, 2020, 123, 1460-1471.	1.8	11
34	Comparison of Multivendor Single-Voxel MR Spectroscopy Data Acquired in Healthy Brain at 26 Sites. Radiology, 2020, 295, 171-180.	7.3	31
35	Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. NeuroImage, 2020, 209, 116530.	4.2	17
36	A computationally efficient method for the attenuation of alternating current stimulation artifacts in electroencephalographic recordings. Journal of Neural Engineering, 2020, 17, 046038.	3.5	8

#	Article	IF	CITATIONS
37	Alterations of hand sensorimotor function and cortical motor representations over the adult lifespan. Aging, 2020, 12, 4617-4640.	3.1	8
38	Sensorimotor cortex neurometabolite levels as correlate of motor performance in normal aging: evidence from a 1H-MRS study. NeuroImage, 2019, 202, 116050.	4.2	22
39	Schema and Motor-Memory Consolidation. Psychological Science, 2019, 30, 963-978.	3.3	16
40	Big GABA II: Water-referenced edited MR spectroscopy at 25 research sites. NeuroImage, 2019, 191, 537-548.	4.2	76
41	Age-related differences in network flexibility and segregation at rest and during motor performance. NeuroImage, 2019, 194, 93-104.	4.2	26
42	Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching. Scientific Reports, 2019, 9, 3144.	3.3	30
43	Hand, foot and lip representations in primary sensorimotor cortex: a high-density electroencephalography study. Scientific Reports, 2019, 9, 19464.	3.3	65
44	A combined diffusionâ€weighted and electroencephalography study on ageâ€related differences in connectivity in the motor network during bimanual performance. Human Brain Mapping, 2019, 40, 1799-1813.	3.6	16
45	Glucocorticoid response to stress induction prior to learning is negatively related to subsequent motor memory consolidation. Neurobiology of Learning and Memory, 2019, 158, 32-41.	1.9	15
46	Age-related alterations in the modulation of intracortical inhibition during stopping of actions. Aging, 2019, 11, 371-385.	3.1	27
47	Motor inhibition efficiency in healthy aging: the role of Î ³ -aminobutyric acid. Neural Regeneration Research, 2019, 14, 741.	3.0	12
48	Challenge to Promote Change: The Neural Basis of the Contextual Interference Effect in Young and Older Adults. Journal of Neuroscience, 2018, 38, 3333-3345.	3.6	22
49	Cerebellar gray matter explains bimanual coordination performance in children and older adults. Neurobiology of Aging, 2018, 65, 109-120.	3.1	18
50	GABA levels and measures of intracortical and interhemispheric excitability in healthy young and older adults: an MRS-TMS study. Neurobiology of Aging, 2018, 65, 168-177.	3.1	62
51	White matter microstructural organisation of interhemispheric pathways predicts different stages of bimanual coordination learning in young and older adults. European Journal of Neuroscience, 2018, 47, 446-459.	2.6	9
52	Being on Target: Visual Information during Writing Affects Effective Connectivity in Parkinson's Disease. Neuroscience, 2018, 371, 484-494.	2.3	9
53	Ageâ€related differences in GABA levels are driven by bulk tissue changes. Human Brain Mapping, 2018, 39, 3652-3662.	3.6	47
54	The neurochemical basis of the contextual interference effect. Neurobiology of Aging, 2018, 66, 85-96.	3.1	35

#	Article	IF	CITATIONS
55	Behavioral and Neural Evidence of the Rewarding Value of Exercise Behaviors: A Systematic Review. Sports Medicine, 2018, 48, 1389-1404.	6.5	77
56	Anatomy of Subcortical Structures Predicts Age-Related Differences in Skill Acquisition. Cerebral Cortex, 2018, 28, 459-473.	2.9	25
57	Altered effective connectivity contributes to micrographia in patients with Parkinson's disease and freezing of gait. Journal of Neurology, 2018, 265, 336-347.	3.6	12
58	Aging and GABA. Aging, 2018, 10, 1186-1187.	3.1	23
59	Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network. Entropy, 2018, 20, 742.	2.2	17
60	Aging and brain plasticity. Aging, 2018, 10, 1789-1790.	3.1	42
61	Brain GABA Levels Are Associated with Inhibitory Control Deficits in Older Adults. Journal of Neuroscience, 2018, 38, 7844-7851.	3.6	82
62	Age-Dependent Modulations of Resting State Connectivity Following Motor Practice. Frontiers in Aging Neuroscience, 2018, 10, 25.	3.4	31
63	Training for Micrographia Alters Neural Connectivity in Parkinson's Disease. Frontiers in Neuroscience, 2018, 12, 3.	2.8	16
64	Structure–function multiâ€scale connectomics reveals a major role of the frontoâ€striatoâ€thalamic circuit in brain aging. Human Brain Mapping, 2018, 39, 4663-4677.	3.6	45
65	Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Structure and Function, 2018, 223, 2039-2053.	2.3	15
66	Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neuroscience and Biobehavioral Reviews, 2018, 94, 31-44.	6.1	440
67	Aging, inhibition and GABA. Aging, 2018, 10, 3645-3646.	3.1	9
68	Cortical grey matter content is associated with both age and bimanual performance, but is not observed to mediate age-related behavioural decline. Brain Structure and Function, 2017, 222, 437-448.	2.3	9
69	Two hands, one brain, and aging. Neuroscience and Biobehavioral Reviews, 2017, 75, 234-256.	6.1	94
70	Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Neurobiology of Aging, 2017, 51, 31-42.	3.1	50
71	Direct eye contact enhances mirroring of others' movements: A transcranial magnetic stimulation study. Neuropsychologia, 2017, 95, 111-118.	1.6	24
72	Big GABA: Edited MR spectroscopy at 24 research sites. NeuroImage, 2017, 159, 32-45.	4.2	143

#	Article	IF	CITATIONS
73	Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning. Neurobiology of Aging, 2017, 58, 54-67.	3.1	37
74	Neural processing of biological motion in autism: An investigation of brain activity and effective connectivity. Scientific Reports, 2017, 7, 5612.	3.3	26
75	Reliable estimation of inhibitory efficiency: to anticipate, choose or simply react?. European Journal of Neuroscience, 2017, 45, 1512-1523.	2.6	28
76	Neural predictors of motor control and impact of visuoâ€proprioceptive information in youth. Human Brain Mapping, 2017, 38, 5628-5647.	3.6	6
77	Proactive Response Inhibition and Subcortical Gray Matter Integrity in Traumatic Brain Injury. Neurorehabilitation and Neural Repair, 2017, 31, 228-239.	2.9	10
78	Coordinative task difficulty and behavioural errors are associated with increased long-range beta band synchronization. Neurolmage, 2017, 146, 883-893.	4.2	19
79	Regional Gray Matter Volume Loss Is Associated with Gait Impairments in Young Brain-Injured Individuals. Journal of Neurotrauma, 2017, 34, 1022-1034.	3.4	17
80	Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults. Neurobiology of Aging, 2017, 50, 47-59.	3.1	52
81	Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task. Frontiers in Psychology, 2017, 8, 249.	2.1	4
82	Handwriting training in Parkinson's disease: A trade-off between size, speed and fluency. PLoS ONE, 2017, 12, e0190223.	2.5	21
83	Enhanced prefrontal functional–structural networks to support postural control deficits after traumatic brain injury in a pediatric population. Network Neuroscience, 2017, 1, 116-142.	2.6	32
84	Effect of Aging on Motor Inhibition during Action Preparation under Sensory Conflict. Frontiers in Aging Neuroscience, 2016, 8, 322.	3.4	57
85	Reconsolidation of Motor Memories Is a Time-Dependent Process. Frontiers in Human Neuroscience, 2016, 10, 408.	2.0	17
86	Relearning of Writing Skills in Parkinson's Disease After Intensive Amplitude Training. Movement Disorders, 2016, 31, 1209-1216.	3.9	36
87	Nucleus accumbens and caudate atrophy predicts longer action selection times in young and old adults. Human Brain Mapping, 2016, 37, 4629-4639.	3.6	22
88	Performing two different actions simultaneously: The critical role of interhemispheric interactions during the preparation of bimanual movement. Cortex, 2016, 77, 141-154.	2.4	51
89	Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling. Gait and Posture, 2016, 45, 143-150.	1.4	12
90	Evaluation of a Modified High-Definition Electrode Montage for Transcranial Alternating Current Stimulation (tACS) of Pre-Central Areas. Brain Stimulation, 2016, 9, 700-704.	1.6	46

#	Article	IF	CITATIONS
91	Handwriting Impairments in People With Parkinson's Disease and Freezing of Gait. Neurorehabilitation and Neural Repair, 2016, 30, 911-919.	2.9	27
92	Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 42.	4.6	125
93	Alterations in brain white matter contributing to ageâ€related slowing of task switching performance: The role of radial diffusivity and magnetization transfer ratio. Human Brain Mapping, 2016, 37, 4084-4098.	3.6	12
94	A proactive task set influences how response inhibition is implemented in the basal ganglia. Human Brain Mapping, 2016, 37, 4706-4717.	3.6	37
95	Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain, 2016, 139, 2469-2485.	7.6	18
96	tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task. Scientific Reports, 2016, 6, 35739.	3.3	33
97	Motor facilitation during action observation: The role of M1 and PMv in grasp predictions. Cortex, 2016, 75, 180-192.	2.4	24
98	Functional Brain Activation Associated with Inhibitory Control Deficits in Older Adults. Cerebral Cortex, 2016, 26, 12-22.	2.9	89
99	Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females. Social Cognitive and Affective Neuroscience, 2016, 11, 1002-1016.	3.0	151
100	Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control. Journal of Neuroscience, 2016, 36, 1808-1822.	3.6	75
101	Slow maturation of planning in obstacle avoidance in humans. Journal of Neurophysiology, 2016, 115, 404-412.	1.8	11
102	Subcortical Volume Loss in the Thalamus, Putamen, and Pallidum, Induced by Traumatic Brain Injury, Is Associated With Motor Performance Deficits. Neurorehabilitation and Neural Repair, 2016, 30, 603-614.	2.9	39
103	Opposite Effects of Visual Cueing During Writing-Like Movements of Different Amplitudes in Parkinson's Disease. Neurorehabilitation and Neural Repair, 2016, 30, 431-439.	2.9	25
104	Impaired Retention of Motor Learning of Writing Skills in Patients with Parkinson's Disease with Freezing of Gait. PLoS ONE, 2016, 11, e0148933.	2.5	32
105	Gait asymmetry during early split-belt walking is related to perception of belt speed difference. Journal of Neurophysiology, 2015, 114, 1705-1712.	1.8	27
106	Adaptation and aftereffects of split-belt walking in cerebellar lesion patients. Journal of Neurophysiology, 2015, 114, 1693-1704.	1.8	27
107	Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate. Human Brain Mapping, 2015, 36, 1265-1277.	3.6	43
108	Regional volumes in brain stem and cerebellum are associated with postural impairments in young brainâ€injured patients. Human Brain Mapping, 2015, 36, 4897-4909.	3.6	31

#	Article	IF	CITATIONS
109	Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients. Journal of Neurophysiology, 2015, 113, 915-924.	1.8	7
110	Challenge to promote change: both young and older adults benefit from contextual interference. Frontiers in Aging Neuroscience, 2015, 7, 157.	3.4	27
111	Age-related deficit in a bimanual joint position matching task is amplitude dependent. Frontiers in Aging Neuroscience, 2015, 7, 162.	3.4	13
112	Reduced Neural Differentiation Between Feedback Conditions After Bimanual Coordination Training with and without Augmented Visual Feedback. Cerebral Cortex, 2015, 25, 1958-1969.	2.9	42
113	Training-induced improvements in postural control are accompanied by alterations in cerebellar white matter in brain injured patients. NeuroImage: Clinical, 2015, 7, 240-251.	2.7	50
114	Subcortical volumetric changes across the adult lifespan: Subregional thalamic atrophy accounts for age-related sensorimotor performance declines. Cortex, 2015, 65, 128-138.	2.4	33
115	Toward new sensitive measures to evaluate gait stability in focal cerebellar lesion patients. Gait and Posture, 2015, 41, 592-596.	1.4	35
116	Neural Correlates of Motor Deficits in Young Patients with Traumatic Brain Injury. , 2015, , 461-468.		3
117	Bimanual Coordination. , 2015, , 475-482.		30
118	Associations between Muscle Strength Asymmetry and Impairments in Gait and Posture in Young Brain-Injured Patients. Journal of Neurotrauma, 2015, 32, 1324-1332.	3.4	20
119	Microstructural changes in white matter associated with freezing of gait in Parkinson's disease. Movement Disorders, 2015, 30, 567-576.	3.9	93
120	Granularity of the mirror neuron system: A complex endeavor. Physics of Life Reviews, 2015, 12, 120-122.	2.8	2
121	Resting-State Functional Connectivity of the Sensorimotor Network in Individuals with Nonspecific Low Back Pain and the Association with the Sit-to-Stand-to-Sit Task. Brain Connectivity, 2015, 5, 303-311.	1.7	49
122	Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Structure and Function, 2015, 220, 273-290.	2.3	64
123	Functional Connectivity Density and Balance in Young Patients with Traumatic Axonal Injury. Brain Connectivity, 2015, 5, 423-432.	1.7	25
124	Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach. PLoS ONE, 2015, 10, e0137020.	2.5	31
125	Amplitude Manipulation Evokes Upper Limb Freezing during Handwriting in Patients with Parkinson's Disease with Freezing of Gait. PLoS ONE, 2015, 10, e0142874.	2.5	24
126	Complexity of Central Processing in Simple and Choice Multilimb Reaction-Time Tasks. PLoS ONE, 2014, 9, e90457.	2.5	38

#	Article	IF	CITATIONS
127	Contextual Interference in Complex Bimanual Skill Learning Leads to Better Skill Persistence. PLoS ONE, 2014, 9, e100906.	2.5	39
128	Changes in Corticomotor Excitability and Intracortical Inhibition of the Primary Motor Cortex Forearm Area Induced by Anodal tDCS. PLoS ONE, 2014, 9, e101496.	2.5	14
129	Vision of the active limb impairs bimanual motor tracking in young and older adults. Frontiers in Aging Neuroscience, 2014, 6, 320.	3.4	16
130	Proprioception in the cerebellum. Frontiers in Human Neuroscience, 2014, 8, 212.	2.0	21
131	Task switching in traumatic brain injury relates to corticoâ€subcortical integrity. Human Brain Mapping, 2014, 35, 2459-2469.	3.6	34
132	Arm sway holds sway: Locomotor-like modulation of leg reflexes when arms swing in alternation. Neuroscience, 2014, 258, 34-46.	2.3	17
133	White matter organization in relation to upper limb motor control in healthy subjects: exploring the added value of diffusion kurtosis imaging. Brain Structure and Function, 2014, 219, 1627-1638.	2.3	17
134	The effects of dual tasking on handwriting in patients with Parkinson's disease. Neuroscience, 2014, 263, 193-202.	2.3	57
135	Subcortical volume analysis in traumatic brain injury: The importance of the fronto-striato-thalamic circuit in task switching. Cortex, 2014, 51, 67-81.	2.4	62
136	Aging and motor inhibition: A converging perspective provided by brain stimulation and imaging approaches. Neuroscience and Biobehavioral Reviews, 2014, 43, 100-117.	6.1	124
137	Interactions between brain structure and behavior: The corpus callosum and bimanual coordination. Neuroscience and Biobehavioral Reviews, 2014, 43, 1-19.	6.1	126
138	Aging effects on the resting state motor network and interlimb coordination. Human Brain Mapping, 2014, 35, 3945-3961.	3.6	53
139	Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neuroscience and Biobehavioral Reviews, 2014, 47, 614-635.	6.1	40
140	Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Social Cognitive and Affective Neuroscience, 2014, 9, 1589-1600.	3.0	106
141	White matter microstructural organization and gait stability in older adults. Frontiers in Aging Neuroscience, 2014, 6, 104.	3.4	62
142	Assessing age-related gray matter decline with voxel-based morphometry depends significantly on segmentation and normalization procedures. Frontiers in Aging Neuroscience, 2014, 6, 124.	3.4	52
143	Microstructural Integrity of the Superior Cerebellar Peduncle Is Associated with an Impaired Proprioceptive Weighting Capacity in Individuals with Non-Specific Low Back Pain. PLoS ONE, 2014, 9, e100666.	2.5	32
144	Diffusion tensor imaging metrics of the corpus callosum in relation to bimanual coordination: Effect of task complexity and sensory feedback. Human Brain Mapping, 2013, 34, 241-252.	3.6	57

#	Article	IF	CITATIONS
145	Disturbed corticoâ€subcortical interactions during motor task switching in traumatic brain injury. Human Brain Mapping, 2013, 34, 1254-1271.	3.6	39
146	Long-term TENS treatment decreases cortical motor representation in multiple sclerosis. Neuroscience, 2013, 250, 1-7.	2.3	7
147	Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neuroscience Letters, 2013, 554, 151-155.	2.1	39
148	Relearning of writing skills in Parkinson's disease: A literature review on influential factors and optimal strategies. Neuroscience and Biobehavioral Reviews, 2013, 37, 349-357.	6.1	33
149	Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neuroscience and Biobehavioral Reviews, 2013, 37, 1824-1837.	6.1	230
150	Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3131-3136.	7.1	76
151	Interlimb Coordination during Forward and Backward Walking in Primary School-Aged Children. PLoS ONE, 2013, 8, e62747.	2.5	13
152	Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis. PLoS ONE, 2013, 8, e62133.	2.5	43
153	Topological correlations of structural and functional networks in patients with traumatic brain injury. Frontiers in Human Neuroscience, 2013, 7, 726.	2.0	77
154	Cortical regions involved in the observation of bimanual actions. Journal of Neurophysiology, 2012, 108, 2594-2611.	1.8	12
155	Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 2012, 135, 1293-1307.	7.6	117
156	Aging and Inhibitory Control of Action: Cortico-Subthalamic Connection Strength Predicts Stopping Performance. Journal of Neuroscience, 2012, 32, 8401-8412.	3.6	149
157	Abnormalities and Cue Dependence of Rhythmical Upper-Limb Movements in Parkinson Patients With Freezing of Gait. Neurorehabilitation and Neural Repair, 2012, 26, 636-645.	2.9	78
158	Split-belt walking: adaptation differences between young and older adults. Journal of Neurophysiology, 2012, 108, 1149-1157.	1.8	81
159	Brain connectivity and postural control in young traumatic brain injury patients: A diffusion MRI based network analysis. NeuroImage: Clinical, 2012, 1, 106-115.	2.7	84
160	Is interlimb coordination during walking preserved in children with cerebral palsy?. Research in Developmental Disabilities, 2012, 33, 1418-1428.	2.2	59
161	White matter fractional anisotropy predicts balance performance in older adults. Neurobiology of Aging, 2012, 33, 1900-1912.	3.1	52
162	Quantifying individual muscle contribution to three-dimensional reaching tasks. Gait and Posture, 2012, 35, 579-584.	1.4	12

#	Article	IF	CITATIONS
163	Specific cerebellar regions are related to force amplitude and rate of force development. NeuroImage, 2012, 59, 1647-1656.	4.2	43
164	Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis. NeuroImage, 2012, 61, 633-650.	4.2	65
165	Hemispheric asymmetries in goal-directed hand movements are independent of hand preference. NeuroImage, 2012, 62, 1815-1824.	4.2	18
166	Active versus Passive Training of a Complex Bimanual Task: Is Prescriptive Proprioceptive Information Sufficient for Inducing Motor Learning?. PLoS ONE, 2012, 7, e37687.	2.5	56
167	Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learning and Memory, 2012, 19, 351-357.	1.3	51
168	The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Human Brain Mapping, 2012, 33, 895-908.	3.6	131
169	Frontoparietal involvement in passively guided shape and length discrimination: a comparison between subcortical stroke patients and healthy controls. Experimental Brain Research, 2012, 220, 179-189.	1.5	26
170	Observing how others lift light or heavy objects: time-dependent encoding of grip force in the primary motor cortex. Psychological Research, 2012, 76, 503-513.	1.7	47
171	Freezing in Parkinson's disease: A spatiotemporal motor disorder beyond gait. Movement Disorders, 2012, 27, 254-263.	3.9	74
172	Action Perception in Individuals with Congenital Blindness or Deafness: How Does the Loss of a Sensory Modality from Birth Affect Perception-induced Motor Facilitation?. Journal of Cognitive Neuroscience, 2011, 23, 1080-1087.	2.3	18
173	Motor Learning with Augmented Feedback: Modality-Dependent Behavioral and Neural Consequences. Cerebral Cortex, 2011, 21, 1283-1294.	2.9	142
174	Bimanual Coordination and Corpus Callosum Microstructure in Young Adults with Traumatic Brain Injury: A Diffusion Tensor Imaging Study. Journal of Neurotrauma, 2011, 28, 897-913.	3.4	58
175	Excitability of the Motor Cortex Ipsilateral to the Moving Body Side Depends on Spatio-Temporal Task Complexity and Hemispheric Specialization. PLoS ONE, 2011, 6, e17742.	2.5	36
176	Action and Emotion Recognition from Point Light Displays: An Investigation of Gender Differences. PLoS ONE, 2011, 6, e20989.	2.5	153
177	Testing Multiple Coordination Constraints with a Novel Bimanual Visuomotor Task. PLoS ONE, 2011, 6, e23619.	2.5	46
178	Age-related changes in brain activation underlying single- and dual-task performance: Visuomanual drawing and mental arithmetic. Neuropsychologia, 2011, 49, 2400-2409.	1.6	69
179	The effect of longâ€ŧerm TENS on persistent neuroplastic changes in the human cerebral cortex. Human Brain Mapping, 2011, 32, 872-882.	3.6	53
180	Hemispheric asymmetries of motor versus nonmotor processes during (visuo)motor control. Human Brain Mapping, 2011, 32, 1311-1329.	3.6	30

#	Article	IF	CITATIONS
181	Involvement of the Primary Motor Cortex in Controlling Movements Executed with the Ipsilateral Hand Differs between Left- and Right-handers. Journal of Cognitive Neuroscience, 2011, 23, 3456-3469.	2.3	43
182	Correlations Between White Matter Integrity and Motor Function in Traumatic Brain Injury Patients. Neurorehabilitation and Neural Repair, 2011, 25, 492-502.	2.9	55
183	Movement Observation Improves Early Consolidation of Motor Memory. Journal of Neuroscience, 2011, 31, 11515-11520.	3.6	35
184	Brain Activity during Ankle Proprioceptive Stimulation Predicts Balance Performance in Young and Older Adults. Journal of Neuroscience, 2011, 31, 16344-16352.	3.6	162
185	Brainâ€behavior relationships in young traumatic brain injury patients: DTI metrics are highly correlated with postural control. Human Brain Mapping, 2010, 31, 992-1002.	3.6	87
186	Brain-behavior relationships in young traumatic brain injury patients: Fractional anisotropy measures are highly correlated with dynamic visuomotor tracking performance. Neuropsychologia, 2010, 48, 1472-1482.	1.6	72
187	Observing how others lift light or heavy objects: Which visual cues mediate the encoding of muscular force in the primary motor cortex?. Neuropsychologia, 2010, 48, 2082-2090.	1.6	78
188	Dual-task interference during initial learning of a new motor task results from competition for the same brain areas. Neuropsychologia, 2010, 48, 2517-2527.	1.6	57
189	The neural control of bimanual movements in the elderly: Brain regions exhibiting ageâ€related increases in activity, frequencyâ€induced neural modulation, and taskâ€specific compensatory recruitment. Human Brain Mapping, 2010, 31, 1281-1295.	3.6	134
190	Force requirements of observed object lifting are encoded by the observer's motor system: a TMS study. European Journal of Neuroscience, 2010, 31, 1144-1153.	2.6	106
191	Limitations on Coupling of Bimanual Movements Caused by Arm Dominance: When the Muscle Homology Principle Fails. Journal of Neurophysiology, 2010, 103, 2027-2038.	1.8	33
192	Long-Term TENS Treatment Improves Tactile Sensitivity in MS Patients. Neurorehabilitation and Neural Repair, 2010, 24, 420-427.	2.9	52
193	Hemispheric Asymmetries of the Premotor Cortex are Task Specific as Revealed by Disruptive TMS During Bimanual Versus Unimanual Movements. Cerebral Cortex, 2010, 20, 2842-2851.	2.9	41
194	Reduced Basal Ganglia Function When Elderly Switch between Coordinated Movement Patterns. Cerebral Cortex, 2010, 20, 2368-2379.	2.9	77
195	Three-dimensional reaching tasks: Effect of reaching height and width on upper limb kinematics and muscle activity. Gait and Posture, 2010, 32, 500-507.	1.4	43
196	Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research, 2010, 208, 408-414.	2.2	85
197	Age-related reduction in the differential pathways involved in internal and external movement generation. Neurobiology of Aging, 2010, 31, 301-314.	3.1	46
198	Children with a learning disorder show prospective control impairments during visuomanual tracking. Research in Developmental Disabilities, 2010, 31, 195-202.	2.2	5

#	Article	IF	CITATIONS
199	Shared neural resources between left and right interlimb coordination skills: The neural substrate of abstract motor representations. NeuroImage, 2010, 49, 2570-2580.	4.2	42
200	Visual guidance modulates hemispheric asymmetries during an interlimb coordination task. NeuroImage, 2010, 50, 1566-1577.	4.2	26
201	Multisensory Integration in Dynamical Behaviors: Maximum Likelihood Estimation across Bimanual Skill Learning. Journal of Neuroscience, 2009, 29, 8419-8428.	3.6	32
202	How are observed actions mapped to the observer's motor system? Influence of posture and perspective. Neuropsychologia, 2009, 47, 415-422.	1.6	101
203	Interaction of sound and sight during action perception: Evidence for shared modality-dependent action representations. Neuropsychologia, 2009, 47, 2593-2599.	1.6	36
204	Age-related differences in inhibitory processes during interlimb coordination. Brain Research, 2009, 1262, 38-47.	2.2	77
205	Increasing convergence between imagined and executed movement across development: evidence for the emergence of movement representations. Developmental Science, 2009, 12, 474-483.	2.4	63
206	Upper limb movement interruptions are correlated to freezing of gait in Parkinson's disease. European Journal of Neuroscience, 2009, 29, 1422-1430.	2.6	118
207	Proprioceptive sensibility in the elderly: Degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 2009, 33, 271-278.	6.1	316
208	Coordination of complex bimanual multijoint movements under increasing cycling frequencies: The prevalence of mirror-image and translational symmetry. Acta Psychologica, 2009, 130, 183-195.	1.5	12
209	Is the human primary motor cortex activated by muscular or direction-dependent features of observed movements?. Cortex, 2009, 45, 1148-1155.	2.4	84
210	Deficits in executed and imagined aiming performance in brain-injured children. Brain and Cognition, 2009, 69, 154-161.	1.8	27
211	Observing shadow motions: Resonant activity within the observer's motor system?. Neuroscience Letters, 2009, 461, 240-244.	2.1	19
212	Ipsilateral coordination at preferred rate: Effects of age, body side and task complexity. NeuroImage, 2009, 47, 1854-1862.	4.2	44
213	Static and Dynamic Visuomotor Task Performance in Children With Acquired Brain Injury. Journal of Head Trauma Rehabilitation, 2009, 24, 363-373.	1.7	13
214	Development of Feedforward Control in a Dynamic Manual Tracking Task. Child Development, 2008, 79, 852-865.	3.0	30
215	Unimanual muscle activation increases interhemispheric inhibition from the active to the resting hemisphere. Neuroscience Letters, 2008, 445, 209-213.	2.1	54
216	Directional constraints during bimanual coordination: The interplay between intrinsic and extrinsic directions as revealed by head motions. Behavioural Brain Research, 2008, 187, 361-370.	2.2	7

#	Article	IF	CITATIONS
217	Changes in corticomotor excitability following prolonged muscle tendon vibration. Behavioural Brain Research, 2008, 190, 41-49.	2.2	55
218	Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: An fMRI study. Cortex, 2008, 44, 482-493.	2.4	58
219	Hemispheric asymmetries in eye–hand coordination. Neurolmage, 2008, 39, 1938-1949.	4.2	19
220	Evidence for Adaptive Shoulder-Elbow Control in Cyclical Movements With Different Amplitudes, Frequencies, and Orientations. Journal of Motor Behavior, 2008, 40, 499-515.	0.9	11
221	Systems Neuroplasticity in the Aging Brain: Recruiting Additional Neural Resources for Successful Motor Performance in Elderly Persons. Journal of Neuroscience, 2008, 28, 91-99.	3.6	431
222	Corticospinal Facilitation Following Prolonged Proprioceptive Stimulation by Means of Passive Wrist Movement. Journal of Clinical Neurophysiology, 2008, 25, 202-209.	1.7	27
223	Whether feeling or seeing is more accurate depends on tracking direction within the perception-action cycle. Behavioural Brain Research, 2007, 178, 229-234.	2.2	10
224	Expert Performance on a Virtual Reality Simulation System. Journal of Dental Education, 2007, 71, 759-766.	1.2	32
225	Expert performance on a virtual reality simulation system. Journal of Dental Education, 2007, 71, 759-66.	1.2	10
226	Information processing in human parieto-frontal circuits during goal-directed bimanual movements. NeuroImage, 2006, 31, 264-278.	4.2	75
227	The advantage of cyclic over discrete movements remains evident following changes in load and amplitude. Neuroscience Letters, 2006, 396, 28-32.	2.1	31
228	Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 2006, 7, 160-166.	10.2	418
229	Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 2006, 168, 157-164.	1.5	371
230	Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Experimental Brain Research, 2006, 170, 543-554.	1.5	23
231	Effects of Interlimb and Intralimb Constraints on Bimanual Shoulder–Elbow and Shoulder–Wrist Coordination Patterns. Journal of Neurophysiology, 2005, 94, 2139-2149.	1.8	17
232	The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. European Journal of Neuroscience, 2005, 22, 235-246.	2.6	270
233	Interaction of neuromuscular, spatial and visual constraints on hand–foot coordination dynamics. Human Movement Science, 2005, 24, 66-80.	1.4	29
234	Spatial interference during bimanual coordination: Differential brain networks associated with control of movement amplitude and direction. Human Brain Mapping, 2005, 26, 286-300.	3.6	54

Stephan P Swinnen

#	Article	IF	CITATIONS
235	Interactions between interlimb and intralimb coordination during the performance of bimanual multijoint movements. Experimental Brain Research, 2005, 163, 515-526.	1.5	21
236	Principal component analysis of complex multijoint coordinative movements. Biological Cybernetics, 2005, 93, 63-78.	1.3	40
237	Learning and Transfer of an Ipsilateral Coordination Task: Evidence for a Dual-layer Movement Representation. Journal of Cognitive Neuroscience, 2005, 17, 1460-1470.	2.3	17
238	Neural Basis of Aging: The Penetration of Cognition into Action Control. Journal of Neuroscience, 2005, 25, 6787-6796.	3.6	378
239	Changes in Brain Activation during the Acquisition of a Multifrequency Bimanual Coordination Task: From the Cognitive Stage to Advanced Levels of Automaticity. Journal of Neuroscience, 2005, 25, 4270-4278.	3.6	260
240	Passive somatosensory discrimination tasks in healthy volunteers: Differential networks involved in familiar versus unfamiliar shape and length discrimination. NeuroImage, 2005, 26, 441-453.	4.2	55
241	Procedural memory in Korsakoff's disease under different movement feedback conditions. Behavioural Brain Research, 2005, 159, 127-133.	2.2	17
242	The role of directional compatibility in assembling coordination patterns involving the upper and lower limb girdles and the head. Behavioural Brain Research, 2005, 165, 262-270.	2.2	5
243	Parieto-premotor Areas Mediate Directional Interference During Bimanual Movements. Cerebral Cortex, 2004, 14, 1153-1163.	2.9	123
244	Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia, 2004, 42, 855-867.	1.6	209
245	Bimanual coordination: constraints imposed by the relative timing of homologous muscle activation. Experimental Brain Research, 2004, 156, 27-38.	1.5	39
246	Bimanual coordination involving homologous and heterologous joint combinations: when lower stability is associated with higher flexibility. Behavioural Brain Research, 2004, 152, 437-445.	2.2	19
247	Inter- and intralimb transfer of a bimanual task: generalisability of limb dissociation. Behavioural Brain Research, 2004, 154, 535-547.	2.2	19
248	Exercise programs for older men: mode and intensity to induce the highest possible health-related benefits. Preventive Medicine, 2004, 39, 823-833.	3.4	32
249	Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 2004, 8, 18-25.	7.8	425
250	Dynamical changes in corticospinal excitability during imagery of unimanual and bimanual wrist movements in humans: a transcranial magnetic stimulation study. Neuroscience Letters, 2004, 359, 185-189.	2.1	25
251	Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage, 2004, 21, 1416-1427.	4.2	183
252	Perception—Action Coupling during Bimanual Coordination: The Role of Visual Perception in the Coalition of Constraints That Govern Bimanual Action. Journal of Motor Behavior, 2004, 36, 394-398.	0.9	8

#	Article	IF	CITATIONS
253	Bimanual Directional Interference: The Effect of Normal versus Augmented Visual Information Feedback on Learning and Transfer. Motor Control, 2004, 8, 33-50.	0.6	6
254	Are Graphomotor Tasks Affected by Working in the Contralateral Hemispace in 6- to 10-Year-Old Children?. Motor Control, 2004, 8, 521-533.	0.6	10
255	Effect of 6-Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A Randomized Controlled Pilot Study. Journal of Bone and Mineral Research, 2003, 19, 352-359.	2.8	602
256	Directional invariance during loading-related modulations of muscle activity: evidence for motor equivalence. Experimental Brain Research, 2003, 148, 62-76.	1.5	29
257	High-frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. Experimental Brain Research, 2003, 151, 309-317.	1.5	58
258	Stability of inter-joint coordination during circle drawing: Effects of shoulder-joint articular properties. Human Movement Science, 2003, 22, 297-320.	1.4	11
259	Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Human Movement Science, 2003, 22, 339-363.	1.4	88
260	Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. NeuroImage, 2003, 19, 764-776.	4.2	288
261	Bimanual Training Reduces Spatial Interference. Journal of Motor Behavior, 2003, 35, 296-308.	0.9	32
262	Head movements destabilize cyclical in-phase but not anti-phase homologous limb coordination in humans. Neuroscience Letters, 2003, 340, 229-233.	2.1	10
263	When visuo-motor incongruence aids motor performance: the effect of perceiving motion structures during transformed visual feedback on bimanual coordination. Behavioural Brain Research, 2003, 138, 45-57.	2.2	53
264	Directional interference during bimanual coordination: is interlimb coupling mediated by afferent or efferent processes. Behavioural Brain Research, 2003, 139, 177-195.	2.2	44
265	Vibration-Induced Changes in EMG During Human Locomotion. Journal of Neurophysiology, 2003, 89, 1299-1307.	1.8	45
266	Patterns of Bimanual Interference Reveal Movement Encoding within a Radial Egocentric Reference Frame. Journal of Cognitive Neuroscience, 2002, 14, 463-471.	2.3	49
267	The effect of aging on dynamic position sense at the ankle. Behavioural Brain Research, 2002, 136, 593-603.	2.2	95
268	The control and learning of patterns of interlimb coordination: past and present issues in normal and disordered control. Acta Psychologica, 2002, 110, 129-137.	1.5	28
269	Coordination deficits on the ipsilesional side after unilateral stroke: the effect of practice on nonisodirectional ipsilateral coordination. Acta Psychologica, 2002, 110, 305-320.	1.5	15
270	Coordination and movement pathology: models of structure and function. Acta Psychologica, 2002, 110, 357-364.	1.5	19

#	Article	IF	CITATIONS
271	Effects of tendon vibration on the spatiotemporal characteristics of human locomotion. Experimental Brain Research, 2002, 143, 231-239.	1.5	54
272	Intermanual coordination: From behavioural principles to neural-network interactions. Nature Reviews Neuroscience, 2002, 3, 348-359.	10.2	641
273	Brain Areas Involved in Interlimb Coordination: A Distributed Network. NeuroImage, 2001, 14, 947-958.	4.2	295
274	Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behavioural Brain Research, 2001, 123, 201-218.	2.2	70
275	Spatial Conceptual Influences on the Coordination of Bimanual Actions: When a Dual Task Becomes a Single Task. Journal of Motor Behavior, 2001, 33, 103-112.	0.9	127
276	Spatial Interactions during Bimanual Coordination Patterns: The Effect of Directional Compatibility. Motor Control, 2001, 5, 183-199.	0.6	16
277	Proprioceptive control of cyclical bimanual forearm movements across different movement frequencies as revealed by means of tendon vibration. Experimental Brain Research, 2001, 140, 326-334.	1.5	26
278	Proprioceptive regulation of interlimb behavior: interference between passive movement and active coordination dynamics. Experimental Brain Research, 2001, 140, 411-419.	1.5	28
279	Directional tuning effects during cyclical two-joint arm movements in the horizontal plane. Experimental Brain Research, 2001, 141, 471-484.	1.5	44
280	Systematic error in the organization of physical action. Cognitive Science, 2001, 25, 393-422.	1.7	15
281	Dynamic position sense during a cyclical drawing movement: effects of application and withdrawal of tendon vibration. Neuropsychologia, 2001, 39, 510-520.	1.6	5
282	The Role of Paraspinal Muscle Spindles in Lumbosacral Position Sense in Individuals With and Without Low Back Pain. Spine, 2000, 25, 989-994.	2.0	392
283	Bimanual coordination and limb-specific parameterization in patients with Parkinson's disease. Neuropsychologia, 2000, 38, 1714-1722.	1.6	32
284	Motor learning and Parkinson's disease: refinement of within-limb and between-limb coordination as a result of practice. Behavioural Brain Research, 2000, 111, 45-59.	2.2	60
285	The synchronization of human arm movements to external events. Neuroscience Letters, 2000, 290, 181-184.	2.1	48
286	Proprioceptive control of multijoint movement: unimanual circle drawing. Experimental Brain Research, 1999, 127, 171-181.	1.5	53
287	Proprioceptive control of multijoint movement: bimanual circle drawing. Experimental Brain Research, 1999, 127, 182-192.	1.5	58
288	Effect of Paraspinal Muscle Vibration on Position Sense of the Lumbosacral Spine. Spine, 1999, 24, 1328.	2.0	93

#	Article	IF	CITATIONS
289	The stability of pen–joint and interjoint coordination in loop writing. Acta Psychologica, 1998, 100, 55-70.	1.5	29
290	Interactive processes during interlimb coordination: Combining movement patterns with different frequency ratios. Psychological Research, 1998, 61, 191-203.	1.7	11
291	Load compensation during homologous and non-homologous coordination. Experimental Brain Research, 1998, 121, 223-229.	1.5	51
292	Exploring interlimb constraints during bimanual graphic performance: effects of muscle grouping and direction. Behavioural Brain Research, 1998, 90, 79-87.	2.2	121
293	AGE-RELATED DEFICITS IN MOTOR LEARNING AND DIFFERENCES IN FEEDBACK PROCESSING DURING THE PRODUCTION OF A BIMANUAL COORDINATION PATTERN. Cognitive Neuropsychology, 1998, 15, 439-466.	1.1	121
294	Component Variability during Bimanual Rhythmic Movements: Not all Harmonic Timing Ratios are Alike. Research Quarterly for Exercise and Sport, 1998, 69, 75-81.	1.4	10
295	Egocentric and Allocentric Constraints in the Expression of Patterns of Interlimb Coordination. Journal of Cognitive Neuroscience, 1997, 9, 348-377.	2.3	170
296	Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 frequency ratio Journal of Experimental Psychology: Human Perception and Performance, 1997, 23, 1087-1110.	0.9	77
297	Interlimb coordination: Learning and transfer under different feedback conditions. Human Movement Science, 1997, 16, 749-785.	1.4	144
298	Coping with systematic bias during bilateral movement. Psychological Research, 1997, 60, 202-213.	1.7	15
299	Between-limb asynchronies during bimanual coordination: Effects of manual dominance and attentional cueing. Neuropsychologia, 1996, 34, 1203-1213.	1.6	135
300	Relative Phase Alterations during Bimanual Skill Acquisition. Journal of Motor Behavior, 1995, 27, 263-274.	0.9	180
301	Cognitive Effort and Motor Learning. Quest, 1994, 46, 328-344.	1.2	237
302	Potential disparities between imagining and preparing motor skills. Behavioral and Brain Sciences, 1994, 17, 227-228.	0.7	2
303	Adaptive Tuning of Interlimb Attraction to Facilitate Bimanual Decoupling. Journal of Motor Behavior, 1992, 24, 95-104.	0.9	114
304	The effect of movement speed on upper-limb coupling strength. Human Movement Science, 1992, 11, 615-636.	1.4	50
305	Dissociating the Structural and Metrical Specifications of Bimanual Movement. Journal of Motor Behavior, 1991, 23, 263-279.	0.9	32
306	Toward a Movement Dynamics Perspective on Dual-Task Performance. Human Factors, 1991, 33, 367-387.	3.5	32

#	Article	IF	CITATIONS
307	Control of asymmetrical bimanual movements. Experimental Brain Research, 1991, 85, 163-73.	1.5	173
308	Interpolated activities during the knowledge-of-results delay and post^knowledge-of-results interval: Effects on performance and learning Journal of Experimental Psychology: Learning Memory and Cognition, 1990, 16, 692-705.	0.9	19
309	Information feedback for skill acquisition: Instantaneous knowledge of results degrades learning Journal of Experimental Psychology: Learning Memory and Cognition, 1990, 16, 706-716.	0.9	140
310	Relative phase destabilization during interlimb coordination: the disruptive role of kinesthetic afferences induced by passive movement. Experimental Brain Research, 1990, 105, 439-54.	1.5	150
311	The Dissociation of Interlimb Constraints. Human Performance, 1990, 3, 187-215.	2.4	20
312	Kinetic Attraction During Bimanual Coordination. Journal of Motor Behavior, 1990, 22, 451-473.	0.9	72
313	Asymmetric interlimb interference during the performance of a dynamic bimanual task. Brain and Cognition, 1990, 14, 185-200.	1.8	71
314	Some Evidence for the Hemispheric Asymmetry Model of Lateral Eye Movements. Perceptual and Motor Skills, 1984, 58, 79-88.	1.3	9
315	Role of Field Dependence in Perception of Movements. Perceptual and Motor Skills, 1983, 57, 319-325.	1.3	4
316	Sigma oscillations protect or reinstate motor memory depending on their temporal coordination with slow waves. ELife, 0, 11, .	6.0	8