Rainer Breitling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039954/publications.pdf

Version: 2024-02-01

208 papers

19,891 citations

23879 60 h-index 134 g-index

226 all docs

226 docs citations

226 times ranked

28474 citing authors

#	Article	IF	Citations
1	What, if anything, is Lycosa accentuata Latreille, 1817? – Review of a nomenclatural conundrum (Araneae: Lycosidae). Zoosystema, 2022, 44, .	0.2	O
2	Host Systems for the Production of Recombinant Spider Silk. Trends in Biotechnology, 2021, 39, 560-573.	4.9	45
3	Investigation of the effects of actinorhodin biosynthetic gene cluster expression and a rpoB point mutation on the metabolome of Streptomyces coelicolor M1146. Journal of Bioscience and Bioengineering, 2021, 131, 525-536.	1.1	6
4	Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiology Letters, 2021, 368, .	0.7	2
5	Multi-omics Study of Planobispora rosea, Producer of the Thiopeptide Antibiotic GE2270A. MSystems, 2021, 6, e0034121.	1.7	2
6	The evolving art of creating genetic diversity: From directed evolution to synthetic biology. Biotechnology Advances, 2021, 50, 107762.	6.0	24
7	Blood, sweat, and tears: extraterrestrial regolith biocomposites with in vivo binders. Materials Today Bio, 2021, 12, 100136.	2.6	12
8	On the authorship and publication dates of Theraphosa and Theraphosidae (Araneae, Mygalomorphae): a clarification. Bionomina, 2021, 24, .	0.2	0
9	Harnessing intercellular signals to engineer the soil microbiome. Natural Product Reports, 2021, , .	5.2	2
10	Unravelling the \hat{I}^3 -butyrolactone network in Streptomyces coelicolor by computational ensemble modelling. PLoS Computational Biology, 2020, 16, e1008039.	1.5	6
11	Multi-Omics Analysis of the Effect of cAMP on Actinorhodin Production in Streptomyces coelicolor. Frontiers in Bioengineering and Biotechnology, 2020, 8, 595552.	2.0	6
12	Engineering Escherichia coli towards de novo production of gatekeeper (2S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synthetic Biology, 2020, 5, ysaa012.	1.2	45
13	Exploring novel bacterial terpene synthases. PLoS ONE, 2020, 15, e0232220.	1.1	30
14	The effect of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers. Scientific Reports, 2020, 10, 10671.	1.6	22
15	Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metabolic Engineering, 2020, 60, 168-182.	3.6	48
16	Towards engineering and production of artificial spider silk using tools of synthetic biology. Engineering Biology, 2020, 4, 1-6.	0.8	9
17	Bioengineering horizon scan 2020. ELife, 2020, 9, .	2.8	19
18	List of German names for the spiders of Germany (Araneae) Arachnologische Mitteilungen, 2020, 59, 38.	0.4	1

#	Article	IF	Citations
19	South European spiders from the Duffey collection in the Manchester Museum (Arachnida: Araneae). , 2020, 18, 333.		6
20	Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries. Synthetic Biology, 2019, 4, ysz025.	1,2	35
21	Dynamics of the human skin mediator lipidome in response to dietary ωâ€3 fatty acid supplementation. FASEB Journal, 2019, 33, 13014-13027.	0.2	29
22	Integrated Probabilistic Annotation: A Bayesian-Based Annotation Method for Metabolomic Profiles Integrating Biochemical Connections, Isotope Patterns, and Adduct Relationships. Analytical Chemistry, 2019, 91, 12799-12807.	3.2	17
23	Synthetic biology for fibers, adhesives, and active camouflage materials in protection and aerospace. MRS Communications, 2019, 9, 486-504.	0.8	21
24	SelProm: A Queryable and Predictive Expression Vector Selection Tool for <i>Escherichia coli</i> Synthetic Biology, 2019, 8, 1478-1483.	1.9	37
25	Computational identification of co-evolving multi-gene modules in microbial biosynthetic gene clusters. Communications Biology, 2019, 2, 83.	2.0	20
26	Efficient learning in metabolic pathway designs through optimal assembling. IFAC-PapersOnLine, 2019, 52, 7-12.	0.5	5
27	Machine Learning of Designed Translational Control Allows Predictive Pathway Optimization in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 127-136.	1.9	88
28	Orthogonal Regulatory Circuits for <i>Escherichia coli</i> Based on the \hat{I}^3 -Butyrolactone System of <i>Streptomyces coelicolor</i> ACS Synthetic Biology, 2018, 7, 1043-1055.	1.9	25
29	Rational cell culture optimization enhances experimental reproducibility in cancer cells. Scientific Reports, 2018, 8, 3029.	1.6	25
30	Output ordering and prioritisation system (OOPS): ranking biosynthetic gene clusters to enhance bioactive metabolite discovery. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 615-619.	1.4	1
31	Selenzyme: enzyme selection tool for pathway design. Bioinformatics, 2018, 34, 2153-2154.	1.8	75
32	Metabolomics tools for the synthetic biology of natural products. Current Opinion in Biotechnology, 2018, 54, 114-120.	3.3	25
33	Detection and Quantification of Butyrolactones from Streptomyces. Methods in Molecular Biology, 2018, 1673, 117-128.	0.4	3
34	Defining informative priors for ensemble modeling in systems biology. Nature Protocols, 2018, 13, 2643-2663.	5 . 5	16
35	Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins. MBio, 2018, 9, .	1.8	19
36	Development and validation of an updated computational model of Streptomyces coelicolor primary and secondary metabolism. BMC Genomics, 2018, 19, 519.	1.2	20

#	Article	IF	CITATIONS
37	The "Three Cs―of Novel Antibiotic Discovery and Production through Synthetic Biology: Biosynthetic Gene Clusters, Heterologous Chassis, and Synthetic Microbial Consortia. Advanced Biology, 2018, 2, 1800064.	3.0	4
38	Mobilising ion mobility mass spectrometry for metabolomics. Analyst, The, 2018, 143, 4783-4788.	1.7	29
39	An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 2018, 1, 66.	2.0	159
40	Respectful Modeling: Addressing Uncertainty in Dynamic System Models for Molecular Biology. Trends in Biotechnology, 2017, 35, 518-529.	4.9	19
41	antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research, 2017, 45, W36-W41.	6.5	1,196
42	RankProd 2.0: a refactored bioconductor package for detecting differentially expressed features in molecular profiling datasets. Bioinformatics, 2017, 33, 2774-2775.	1.8	113
43	A transatlantic perspective on 20 emerging issues in biological engineering. ELife, 2017, 6, .	2.8	49
44	biochem4j: Integrated and extensible biochemical knowledge through graph databases. PLoS ONE, 2017, 12, e0179130.	1.1	31
45	reGenotyper: Detecting mislabeled samples in genetic data. PLoS ONE, 2017, 12, e0171324.	1.1	25
46	Public DNA barcoding data resolve the status of the genus Arboricaria (Araneae: Gnaphosidae). Arachnologische Mitteilungen, 2017, 54, 24-27.	0.4	6
47	Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle. Natural Product Reports, 2016, 33, 925-932.	5.2	58
48	SYNBIOCHEM–a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Biochemical Society Transactions, 2016, 44, 675-677.	1.6	7
49	Synthetic Biology of Natural Products. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023994.	2.3	22
50	SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production. Synthetic and Systems Biotechnology, 2016, 1, 271-275.	1.8	6
51	Towards synthesis of monoterpenes and derivatives using synthetic biology. Current Opinion in Chemical Biology, 2016, 34, 37-43.	2.8	89
52	Phantom spiders 2: More notes on dubious spider species from Europe. Arachnologische Mitteilungen, 2016, 52, 50-77.	0.4	12
53	Epigean Spiders at Abisko Scientific Research Station in Swedish Lapland (Arachnida: Araneae). Arachnology, 2015, 16, 287-293.	0.4	0
54	Bacterial Microcompartments: Biomaterials for Synthetic Biology-Based Compartmentalization Strategies. ACS Biomaterials Science and Engineering, 2015, $1,345-351$.	2.6	36

#	Article	IF	Citations
55	Judging synthetic biology risks. Science, 2015, 347, 107-107.	6.0	18
56	Butyrolactone signalling circuits for synthetic biology. Current Opinion in Chemical Biology, 2015, 28, 91-98.	2.8	54
57	antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 2015, 43, W237-W243.	6.5	1,764
58	Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted Metabolomics with Stable Isotope Labelled Glucose. PLoS Pathogens, 2015, 11, e1004689.	2.1	128
59	Synthetic biology advances for pharmaceutical production. Current Opinion in Biotechnology, 2015, 35, 46-51.	3.3	59
60	Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets. Bioinformatics, 2015, 31, 1999-2006.	1.8	10
61	Remarks on Synonyms of EuropeanLarinioidesSpecies (Arachnida: Araneae: Araneidae). Arachnology, 2015, 16, 305-310.	0.4	1
62	LC–MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics, 2015, 11, 1721-1732.	1.4	36
63	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
64	TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 2015, 43, D637-D644.	6.5	35
65	Phantom spiders: notes on dubious spider species from Europe. Arachnologische Mitteilungen, 2015, 50, 65-80.	0.4	6
66	antiSMASH., 2015,, 33-38.		0
67	Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products. PLoS Computational Biology, 2014, 10, e1003822.	1.5	81
68	Phosphoenolpyruvate Carboxylase Identified as a Key Enzyme in Erythrocytic Plasmodium falciparum Carbon Metabolism. PLoS Pathogens, 2014, 10, e1003876.	2.1	32
69	MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach. Bioinformatics, 2014, 30, 2764-2771.	1.8	63
70	A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments. BMC Bioinformatics, 2014, 15, 367.	1.2	23
71	Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis, 2014, 6, 511-524.	0.6	171
72	The Silicon Trypanosome. Advances in Microbial Physiology, 2014, 64, 115-143.	1.0	5

#	Article	IF	CITATIONS
73	Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiology Letters, 2014, 351, 116-125.	0.7	69
74	Theridion zonulatum Thorell 1890, a senior synonym of Theridion zebrinusum Zhu 1998. Acta Arachnologica, 2014, 63, 79-82.	0.0	0
7 5	A fast algorithm for determining bounds and accurate approximate p -values of the rank product statistic for replicate experiments. BMC Bioinformatics, 2014, 15, 367.	1.2	19
76	Natural Products: Tools and More Special Issue. ACS Synthetic Biology, 2013, 2, 352-353.	1.9	0
77	Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9, 44-66.	1.4	452
78	Metabolic adaptations of <i><scp>L</scp>eishmania donovani</i> in relation to differentiation, drug resistance, and drug pressure. Molecular Microbiology, 2013, 90, 428-442.	1.2	48
79	antiSMASH 2.0â€"a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Research, 2013, 41, W204-W212.	6.5	753
80	The exact probability distribution of the rank product statistics for replicated experiments. FEBS Letters, 2013, 587, 677-682.	1.3	33
81	Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice. Current Opinion in Biotechnology, 2013, 24, 1144-1150.	3.3	32
82	Modeling Challenges in the Synthetic Biology of Secondary Metabolism. ACS Synthetic Biology, 2013, 2, 373-378.	1.9	30
83	LC-MS METABOLOMICS FROM STUDY DESIGN TO DATA-ANALYSIS – USING A VERSATILE PATHOGEN AS A TEST CASE. Computational and Structural Biotechnology Journal, 2013, 4, e201301002.	1.9	39
84	mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics, 2013, 29, 281-283.	1.8	91
85	Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei. PLoS Computational Biology, 2013, 9, e1003371.	1.5	40
86	Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast. Molecular Biology and Evolution, 2013, 30, 1218-1223.	3.5	368
87	Metabolomics for Secondary Metabolite Research. Metabolites, 2013, 3, 1076-1083.	1.3	59
88	Computation: A New Open Access Journal of Computational Chemistry, Computational Biology and Computational Engineering. Computation, 2013, 1, 27-30.	1.0	1
89	Explicit consideration of topological and parameter uncertainty gives new insights into a wellâ€established model of glycolysis. FEBS Journal, 2013, 280, 4640-4651.	2.2	15
90	Human neuroblastoma cells with acquired resistance to the p53 activator RITA retain functional p53 and sensitivity to other p53 activating agents. Cell Death and Disease, 2012, 3, e294-e294.	2.7	24

#	Article	IF	Citations
91	Selection of a highly invasive neuroblastoma cell population through long-term human cytomegalovirus infection. Oncogenesis, 2012, 1, e10-e10.	2.1	6
92	msCompare: A Framework for Quantitative Analysis of Label-free LC-MS Data for Comparative Candidate Biomarker Studies. Molecular and Cellular Proteomics, 2012, 11, M111.015974.	2.5	39
93	IDEOM: an Excel interface for analysis of LC–MS-based metabolomics data. Bioinformatics, 2012, 28, 1048-1049.	1.8	307
94	Computational tools for the synthetic design of biochemical pathways. Nature Reviews Microbiology, 2012, 10, 191-202.	13.6	206
95	Stable Isotope-Assisted Metabolomics for Network-Wide Metabolic Pathway Elucidation. Analytical Chemistry, 2012, 84, 8442-8447.	3.2	132
96	Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism. PLoS Computational Biology, 2012, 8, e1002352.	1.5	28
97	Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets. Metabolomics, 2012, 8, 29-36.	1.4	50
98	Effect of iTRAQ Labeling on the Relative Abundance of Peptide Fragment lons Produced by MALDI-MS/MS. Journal of Proteome Research, 2012, 11, 4044-4051.	1.8	1
99	A turning point for natural product discovery – ESFâ€EMBO research conference: synthetic biology of antibiotic production. Molecular Microbiology, 2012, 83, 884-893.	1.2	4
100	Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Letters, 2012, 586, 2177-2183.	1.3	63
101	Metabolomic Systems Biology of Protozoan Parasites. , 2012, , 73-84.		8
102	antiSMASH., 2012,, 1-6.		1
103	MultiMetEval: Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models. PLoS ONE, 2012, 7, e51511.	1.1	31
104	antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 2011, 39, W339-W346.	6.5	1,622
105	PeakML/mzMatch: A File Format, Java Library, R Library, and Tool-Chain for Mass Spectrometry Data Analysis. Analytical Chemistry, 2011, 83, 2786-2793.	3.2	305
106	Synthetic Biology in Streptomyces Bacteria. Methods in Enzymology, 2011, 497, 485-502.	0.4	50
107	Exploring the metabolic state of microorganisms using metabolomics. Bioanalysis, 2011, 3, 2443-2458.	0.6	19
108	Toward Global Metabolomics Analysis with Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry: Improved Metabolite Identification by Retention Time Prediction. Analytical Chemistry, 2011, 83, 8703-8710.	3.2	326

#	Article	IF	CITATIONS
109	Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR. Molecular and Cellular Proteomics, 2011, 10, M000052-MCP200.	2.5	12
110	Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nature Reviews Microbiology, 2011, 9, 131-137.	13.6	152
111	Genomeâ€wide gene expression changes in an industrial clavulanic acid overproduction strain of <i>Streptomyces clavuligerus</i> i>. Microbial Biotechnology, 2011, 4, 300-305.	2.0	49
112	Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in <i>Streptomyces coelicolor</i> A3(2). Microbial Biotechnology, 2011, 4, 239-251.	2.0	29
113	Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor. BMC Research Notes, 2011, 4, 325.	0.6	2
114	Comparative genome-scale metabolic modeling of actinomycetes: The topology of essential core metabolism. FEBS Letters, 2011, 585, 2389-2394.	1.3	29
115	Metabolomic analysis of a synthetic metabolic switch in <i>Streptomyces coelicolor</i> A3(2). Proteomics, 2011, 11, 4622-4631.	1.3	20
116	Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death and Disease, 2011, 2, e243-e243.	2.7	157
117	The future of industrial antibiotic production: From random mutagenesis to synthetic biology. Bioengineered Bugs, 2011, 2, 230-233.	2.0	49
118	Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR. Molecular and Cellular Proteomics, 2011, 10, M000052-MCP200-M000052-MCP200.	2.5	13
119	Metabolomic systems biology of trypanosomes. Parasitology, 2010, 137, 1285-1290.	0.7	19
120	The Sequence of a 1.8-Mb Bacterial Linear Plasmid Reveals a Rich Evolutionary Reservoir of Secondary Metabolic Pathways. Genome Biology and Evolution, 2010, 2, 212-224.	1.1	193
121	Towards an unbiased metabolic profiling of protozoan parasites: optimisation of a Leishmania sampling protocol for HILIC-orbitrap analysis. Analytical and Bioanalytical Chemistry, 2010, 398, 2059-2069.	1.9	48
122	DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformatics, 2010, 11, 497.	1.2	190
123	The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 10.	1.2	171
124	Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor. BMC Genomics, 2010, 11, 202.	1.2	84
125	A circuit model of the temporal pattern generator of Caenorhabditis egg-laying behavior. BMC Systems Biology, 2010, 4, 81.	3.0	14
126	Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochemical Pharmacology, 2010, 79, 130-136.	2.0	100

#	Article	IF	Citations
127	Genome-based phylogenetic analysis of Streptomyces and its relatives. Molecular Phylogenetics and Evolution, 2010, 54, 763-772.	1.2	40
128	What is systems biology?. Frontiers in Physiology, 2010, 1, 9.	1.3	84
129	Metabolomic Characterization of the Salt Stress Response in <i>Streptomyces coelicolor</i> and Environmental Microbiology, 2010, 76, 2574-2581.	1.4	84
130	Global Genetic Robustness of the Alternative Splicing Machinery in <i>Caenorhabditis elegans</i> Genetics, 2010, 186, 405-410.	1.2	55
131	The potential of metabolomics for <i>Leishmania</i> research in the post-genomics era. Parasitology, 2010, 137, 1291-1302.	0.7	38
132	Metabolomics to Unveil and Understand Phenotypic Diversity between Pathogen Populations. PLoS Neglected Tropical Diseases, 2010, 4, e904.	1.3	91
133	Coronatine-Insensitive 1 (COI1) Mediates Transcriptional Responses of Arabidopsis thaliana to External Potassium Supply. Molecular Plant, 2010, 3, 390-405.	3.9	62
134	Apex Peptide Elution Chain Selection: A New Strategy for Selecting Precursors in 2D-LCâ^MALDI-TOF/TOF Experiments on Complex Biological Samples. Journal of Proteome Research, 2010, 9, 5922-5928.	1.8	3
135	The silicon trypanosome. Parasitology, 2010, 137, 1333-1341.	0.7	25
136	Biomodel Engineering – From Structure to Behavior. Lecture Notes in Computer Science, 2010, , 1-12.	1.0	7
137	Computational Modelling of Kinase Signalling Cascades. Methods in Molecular Biology, 2010, 661, 369-384.	0.4	3
138	Simple data-reduction method for high-resolution LC–MS data in metabolomics. Bioanalysis, 2009, 1, 1551-1557.	0.6	52
139	Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics, 2009, 25, 512-518.	1.8	82
140	Expression Quantitative Trait Loci Are Highly Sensitive to Cellular Differentiation State. PLoS Genetics, 2009, 5, e1000692.	1.5	85
141	The Yeast Vacuolar Membrane Proteome. Molecular and Cellular Proteomics, 2009, 8, 380-392.	2.5	77
142	designGG: an R-package and web tool for the optimal design of genetical genomics experiments. BMC Bioinformatics, 2009, 10, 188.	1.2	10
143	Neurodegenerative diseases: Lessons from genomeâ€wide screens in small model organisms. EMBO Molecular Medicine, 2009, 1, 360-370.	3.3	72
144	System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genetics, 2009, 41, 166-167.	9.4	249

#	Article	IF	Citations
145	Robust signaling networks of the adipose secretome. Trends in Endocrinology and Metabolism, 2009, 20, 1-7.	3.1	23
146	Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Molecular Cancer, 2009, 8, 80.	7.9	25
147	An Introduction to BioModel Engineering, Illustrated for Signal Transduction Pathways. Lecture Notes in Computer Science, 2009, , 13-28.	1.0	10
148	Increasing the mass accuracy of highâ€resolution LCâ€MS data using background ions – a case study on the LTQâ€Orbitrap. Proteomics, 2008, 8, 4647-4656.	1.3	56
149	New surveyor tools for charting microbial metabolic maps. Nature Reviews Microbiology, 2008, 6, 156-161.	13.6	83
150	Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources. BMC Genomics, 2008, 9, 495.	1.2	5
151	Generalizing genetical genomics: getting added value from environmental perturbation. Trends in Genetics, 2008, 24, 518-524.	2.9	41
152	A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics, 2008, 24, 374-382.	1.8	208
153	A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Briefings in Bioinformatics, 2008, 9, 404-421.	3.2	61
154	MetaNetter: inference and visualization of high-resolution metabolomic networks. Bioinformatics, 2008, 24, 143-145.	1.8	56
155	Genetical Genomics: Spotlight on QTL Hotspots. PLoS Genetics, 2008, 4, e1000232.	1.5	172
156	C. elegans Model Identifies Genetic Modifiers of \hat{l}_{\pm} -Synuclein Inclusion Formation During Aging. PLoS Genetics, 2008, 4, e1000027.	1.5	370
157	FIVA: Functional Information Viewer and Analyzer extracting biological knowledge from transcriptome data of prokaryotes. Bioinformatics, 2007, 23, 1161-1163.	1.8	26
158	Microarray challenges in ecology. Trends in Ecology and Evolution, 2007, 22, 273-279.	4.2	65
159	Sequence Polymorphisms Cause Many False cis eQTLs. PLoS ONE, 2007, 2, e622.	1.1	113
160	Greased hedgehogs: New links between hedgehog signaling and cholesterol metabolism. BioEssays, 2007, 29, 1085-1094.	1.2	18
161	Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series. Proteomics, 2007, 7, 3219-3228.	1.3	15
162	A verification protocol for the probe sequences of Affymetrix genome arrays reveals high probe accuracy for studies in mouse, human and rat. BMC Bioinformatics, 2007, 8, 132.	1.2	13

#	Article	IF	Citations
163	Predicting protein function by machine learning on amino acid sequences – a critical evaluation. BMC Genomics, 2007, 8, 78.	1.2	28
164	Analysis of Tiling Microarray Data by Learning Vector Quantization and Relevance Learning. , 2007, , 880-889.		8
165	Discriminating Microbial Species Using Protein Sequence Properties and Machine Learning., 2007,, 890-897.		0
166	Interspecies comparison of gene structure and computational analysis of gene regulation of 17beta-hydroxysteroid dehydrogenase type 1. Molecular and Cellular Endocrinology, 2006, 248, 168-171.	1.6	3
167	Regulation of ubiquitin-binding proteins by monoubiquitination. Nature Cell Biology, 2006, 8, 163-169.	4.6	279
168	Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2006, 2, 155-164.	1.4	117
169	Biological microarray interpretation: The rules of engagement. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2006, 1759, 319-327.	2.4	40
170	Precision mapping of the metabolome. Trends in Biotechnology, 2006, 24, 543-548.	4.9	125
171	Network Theory to Understand Microarray Studies of Complex Diseases. Current Molecular Medicine, 2006, 6, 695-701.	0.6	34
172	Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans. PLoS Genetics, 2006, 2, e222.	1.5	269
173	RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics, 2006, 22, 2825-2827.	1.8	652
174	A lock-and-key model for protein-protein interactions. Bioinformatics, 2006, 22, 2012-2019.	1.8	86
175	Vector analysis as a fast and easy method to compare gene expression responses between different experimental backgrounds. BMC Bioinformatics, 2005, 6, 181.	1.2	16
176	GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics, 2005, 6, 233.	1.2	214
177	FRANKSUM: NEW FEATURE SELECTION METHOD FOR PROTEIN FUNCTION PREDICTION. International Journal of Neural Systems, 2005, 15, 259-275.	3.2	25
178	RANK-BASED METHODS AS A NON-PARAMETRIC ALTERNATIVE OF THE T-STATISTIC FOR THE ANALYSIS OF BIOLOGICAL MICROARRAY DATA. Journal of Bioinformatics and Computational Biology, 2005, 03, 1171-1189.	0.3	128
179	Biological Master Games: Using Biologists' Reasoning to Guide Algorithm Development for Integrated Functional Genomics. OMICS A Journal of Integrative Biology, 2005, 9, 225-232.	1.0	9
180	The Latent Process Decomposition of cDNA Microarray Data Sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 143-156.	1.9	66

#	Article	IF	CITATIONS
181	Inhibition of 17beta-hydroxysteroid dehydrogenases by phytoestrogens: Comparison with other steroid metabolizing enzymes. Journal of Steroid Biochemistry and Molecular Biology, 2005, 93, 285-292.	1.2	31
182	Current challenges in quantitative modeling of epidermal growth factor signaling. FEBS Letters, 2005, 579, 6289-6294.	1.3	25
183	Feature Selection and the Class Imbalance Problem in Predicting Protein Function from Sequence. Applied Bioinformatics, 2005, 4, 195-203.	1.7	94
184	Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans. PLoS Genetics, 2005, preprint, e222.	1.5	1
185	Feature Selection and the Class Imbalance Problem in Predicting Protein Function from Sequence. , 2005, 4, 195.		4
186	Biologically valid linear factor models of gene expression. Bioinformatics, 2004, 20, 3021-3033.	1.8	32
187	The Potassium-Dependent Transcriptome of Arabidopsis Reveals a Prominent Role of Jasmonic Acid in Nutrient Signaling. Plant Physiology, 2004, 136, 2556-2576.	2.3	431
188	Graph-based iterative Group Analysis enhances microarray interpretation. BMC Bioinformatics, 2004, 5, 100.	1.2	92
189	Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system viathe diazepam binding inhibitor. BMC Pediatrics, 2004, 4, 5.	0.7	12
190	Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Letters, 2004, 573, 83-92.	1.3	1,319
191	Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics, 2004, 5, 34.	1.2	139
192	Isopentenyl-Diphosphate Isomerases in Human and Mouse: Evolutionary Analysis of a Mammalian Gene Duplication. Journal of Molecular Evolution, 2003, 57, 282-291.	0.8	11
193	Embryonic expression of cholesterogenic genes is restricted to distinct domains and colocalizes with apoptotic regions in mice. Molecular Brain Research, 2003, 115, 87-92.	2.5	17
194	Closing the Gap: Identification of Human 3-Ketosteroid Reductase, the Last Unknown Enzyme of Mammalian Cholesterol Biosynthesis. Molecular Endocrinology, 2003, 17, 1715-1725.	3.7	121
195	Loss of Compartmentalization Causes Misregulation of Lysine Biosynthesis in Peroxisome-Deficient Yeast Cells. Eukaryotic Cell, 2002, 1, 978-986.	3.4	32
196	A second gene for peroxisomal HMG-CoA reductase? A genomic reassessment. Journal of Lipid Research, 2002, 43, 2031-2036.	2.0	19
197	Evolution of $17\hat{l}^2$ -HSD type 4, a multifunctional protein of \hat{l}^2 -oxidation. Molecular and Cellular Endocrinology, 2001, 171, 205-210.	1.6	54
198	$17\hat{l}^2$ -hydroxysteroid dehydrogenase type 7 $\hat{a}\in$ " an ancient 3-ketosteroid reductase of cholesterogenesis. Molecular and Cellular Endocrinology, 2001, 171, 199-204.	1.6	52

#	Article	IF	CITATIONS
199	Phytoestrogens inhibit human $17\hat{l}^2$ -hydroxysteroid dehydrogenase type 5. Molecular and Cellular Endocrinology, 2001, 171, 151-162.	1.6	130
200	Structure-based Phylogenetic Analysis of Short-chain Alcohol Dehydrogenases and Reclassification of the 17beta-Hydroxysteroid Dehydrogenase Family. Molecular Biology and Evolution, 2001, 18, 2154-2161.	3.5	31
201	Expression of Muscarinic Receptor Types in the Primate Ovary and Evidence for Nonneuronal Acetylcholine Synthesis. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 349-354.	1.8	52
202	Origin of the paired domain. Development Genes and Evolution, 2000, 210, 644-650.	0.4	57
203	Determination of cDNA, gene structure and chromosomal localization of the novel human 17β-hydroxysteroid dehydrogenase type 7. FEBS Letters, 1999, 460, 373-379.	1.3	104
204	BARCODE TAXONOMY AT THE GENUS LEVEL. Ecologica Montenegrina, 0, 21, 17-37.	0.5	6
205	A BARCODE-BASED PHYLOGENETIC SCAFFOLD FOR XYSTICUS AND ITS RELATIVES (ARANEAE: THOMISIDAE:) TJ ET	ГQq1 1 0.7 0.5	784314 rgB
206	HOW NOT TO CONDUCT A SCIENTIFIC DEBATE: A COUNTERPOINT TO THE RECENT CRITIQUE OF THE "PRAGMATIC CLASSIFICATION―OF JUMPING SPIDERS (ARTHROPODA: ARACHNIDA: ARANEAE: SALTICIDAE). Ecologica Montenegrina, 0, 21, 62-69.	0.5	4
207	A LITTLE LEARNING IS A DANGEROUS THING – ON THE USEFULNESS OF BARCODE DATA FOR GENUS-LEVEL TAXONOMY. Ecologica Montenegrina, 0, 22, 40-49.	0.5	4
208	CodonGenie: optimised ambiguous codon design tools. PeerJ Computer Science, 0, 3, e120.	2.7	12