
Francisco J Lara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemiluminescence detection in liquid chromatography: Applications to clinical, pharmaceutical, environmental and food analysis—A review. Analytica Chimica Acta, 2009, 640, 7-28.	5.4	155
2	Multiresidue Method for the Determination of Quinolone Antibiotics in Bovine Raw Milk by Capillary Electrophoresisâ	6.5	140
3	Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Analytica Chimica Acta, 2015, 891, 321-328.	5.4	122
4	Applications of capillary electrophoresis to the determination of antibiotics in food and environmental samples. Analytical and Bioanalytical Chemistry, 2009, 395, 967-986.	3.7	81
5	Advances in the determination of β-lactam antibiotics by liquid chromatography. TrAC - Trends in Analytical Chemistry, 2012, 38, 52-66.	11.4	74
6	Salting-out assisted liquid–liquid extraction combined with capillary HPLC for the determination of sulfonylurea herbicides in environmental water and banana juice samples. Talanta, 2014, 127, 51-58.	5.5	70
7	Vortex-assisted ionic liquid dispersive liquid–liquid microextraction for the determination of sulfonylurea herbicides in wine samples by capillary high-performance liquid chromatography. Food Chemistry, 2015, 170, 348-353.	8.2	70
8	Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis. Journal of Chromatography A, 2009, 1216, 3372-3379.	3.7	64
9	Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples. Journal of Chromatography A, 2014, 1360, 1-8.	3.7	63
10	Evaluation of dispersive liquid–liquid microextraction for the determination of patulin in apple juices using micellar electrokinetic capillary chromatography. Food Control, 2013, 31, 353-358.	5.5	62
11	Inâ€line solidâ€phase extraction preconcentration in capillary electrophoresisâ€tandem mass spectrometry for the multiresidue detection of quinolones in meat by pressurized liquid extraction. Electrophoresis, 2008, 29, 2117-2125.	2.4	59
12	Chemiluminescence detection coupled to capillary electrophoresis. TrAC - Trends in Analytical Chemistry, 2009, 28, 973-986.	11.4	58
13	Applications of capillary electrophoresis with chemiluminescence detection in clinical, environmental and food analysis. A review. Analytica Chimica Acta, 2016, 913, 22-40.	5.4	57
14	Determination of thiazinamium, promazine and promethazine in pharmaceutical formulations using a CZE method. Analytica Chimica Acta, 2005, 535, 101-108.	5.4	54
15	Analytical applications of photoinduced chemiluminescence in flow systems—A review. Analytica Chimica Acta, 2010, 679, 17-30.	5.4	53
16	Development and validation of a capillary electrophoresis method for the determination of phenothiazines in human urine in the low nanogramper milliliter concentration range using field-amplified sample injection. Electrophoresis, 2005, 26, 2418-2429.	2.4	50
17	Advances and analytical applications in chemiluminescence coupled to capillary electrophoresis. Electrophoresis, 2010, 31, 1998-2027.	2.4	45
18	Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta, 2018, 1043, 52-63.	5.4	43

Francisco J Lara

#	Article	IF	CITATIONS
19	Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis, 2006, 27, 2348-2359.	2.4	40
20	Evaluation of a molecularly imprinted polymer as inâ€line concentrator in capillary electrophoresis. Electrophoresis, 2008, 29, 3834-3841.	2.4	38
21	On-line anion exchange solid-phase extraction coupled to liquid chromatography with fluorescence detection to determine quinolones in water and human urine. Journal of Chromatography A, 2013, 1310, 91-97.	3.7	34
22	Trends in the analytical applications of chemiluminescence in the liquid phase. Analytical and Bioanalytical Chemistry, 2006, 387, 165-169.	3.7	32
23	Advances in the application of chemiluminescence detection in liquid chromatography. TrAC - Trends in Analytical Chemistry, 2016, 75, 35-48.	11.4	32
24	Retention and selectivity of basic drugs on solid-phase extraction sorbents: Application to direct determination of β-blockers in urine. Analytical and Bioanalytical Chemistry, 2014, 406, 4207-4215.	3.7	29
25	Hollowâ€fiber liquidâ€phase microextraction combined with capillary <scp>HPLC</scp> for the selective determination of six sulfonylurea herbicides in environmental waters. Journal of Separation Science, 2013, 36, 3395-3401.	2.5	28
26	A natural deep eutectic solvent as a novel dispersive solvent in dispersive liquid-liquid microextraction based on solidification of floating organic droplet for the determination of pesticide residues. Analytical and Bioanalytical Chemistry, 2021, 413, 6413-6424.	3.7	28
27	Determination of benzimidazoles in meat samples by capillary zone electrophoresis tandem mass spectrometry following dispersive liquid–liquid microextraction. Journal of Chromatography A, 2017, 1490, 212-219.	3.7	26
28	Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified Quick Polar Pesticides Extraction method. Journal of Chromatography A, 2017, 1496, 37-44.	3.7	26
29	Green and simple analytical method to determine benzimidazoles in milk samples by using salting-out assisted liquid-liquid extraction and capillary liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1091, 46-52.	2.3	24
30	Determination of sulfonamides in serum by on-line solid-phase extraction coupled to liquid chromatography with photoinduced fluorescence detection. Talanta, 2015, 138, 258-262.	5.5	19
31	Determination of 5-nitroimidazole residues in milk by capillary electrochromatography with packed C18 silica beds. Talanta, 2015, 144, 542-550.	5.5	19
32	High-Performance Liquid Chromatography Method for the Monitoring of the Allium Derivative Propyl Propane Thiosulfonate Used as Natural Additive in Animal Feed. Food Analytical Methods, 2015, 8, 916-921.	2.6	15
33	Coupling sweeping-micellar electrokinetic chromatography with tandem mass spectrometry for the therapeutic monitoring of benzimidazoles in animal urine by dilute and shoot. Talanta, 2017, 175, 542-549.	5.5	15
34	Multiclass cyanotoxin analysis in reservoir waters: Tandem solid-phase extraction followed by zwitterionic hydrophilic interaction liquid chromatography-mass spectrometry. Talanta, 2022, 237, 122929.	5.5	15
35	Monitoring of cyanotoxins in water from hypersaline microalgae colonies by ultra high performance liquid chromatography with diode array and tandem mass spectrometry detection following salting-out liquid-liquid extraction. Journal of Chromatography A, 2019, 1608, 460409.	3.7	13
36	Micellar electrokinetic chromatography as efficient alternative for the multiresidue determination of seven neonicotinoids and 6-chloronicotinic acid in environmental samples. Analytical and Bioanalytical Chemistry, 2020, 412, 6231-6240.	3.7	11

Francisco J Lara

#	ARTICLE	IF	CITATIONS
37	Sweeping-micellar electrokinetic chromatography with tandem mass spectrometry as an alternative methodology to determine neonicotinoid and boscalid residues in pollen and honeybee samples. Journal of Chromatography A, 2022, 1672, 463023.	3.7	11
38	Ultra-high performance liquid chromatography with fluorescence detection following salting-out assisted liquid–liquid extraction for the analysis of benzimidazole residues in farm fish samples. Journal of Chromatography A, 2018, 1543, 58-66.	3.7	10
39	Capillary liquid chromatography as an effective method for the determination of seven neonicotinoid residues in honey samples. Journal of Separation Science, 2020, 43, 3847-3855.	2.5	9
40	A novel approach based on capillary liquid chromatography for the simultaneous determination of neonicotinoid residues in cereal samples. Microchemical Journal, 2021, 161, 105756.	4.5	9
41	Flip-Chip Bonded GaP Photodiodes for Detection of 400- to 480-nm Fluorescence. IEEE Photonics Technology Letters, 2011, 23, 878-880.	2.5	8
42	Dispersive Liquid–Liquid Microextraction Followed by Capillary High-Performance Liquid Chromatography for the Determination of Six Sulfonylurea Herbicides in Fruit Juices. Food Analytical Methods, 2013, 7, 1465.	2.6	6
43	A first approach using micellar electrokinetic capillary chromatography for the determination of fipronilâ€sulfone in eggs. Electrophoresis, 2020, 41, 202-208.	2.4	6
44	Determination of the Main Ergot Alkaloids and Their Epimers in Oat-Based Functional Foods by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Molecules, 2021, 26, 3717.	3.8	6
45	Nanofibrous Online Solid-Phase Extraction Coupled with Liquid Chromatography for the Determination of Neonicotinoid Pesticides in River Waters. Membranes, 2022, 12, 648.	3.0	5
46	Food Safety Applications of Capillary Electromigration Methods. , 2018, , 511-545.		3
47	Simple and efficient method for the determination of fipronil and two main metabolites in eggs by capillary liquid chromatography. Microchemical Journal, 2021, 169, 106595.	4.5	1
48	Fluorescence Detection 400–480 nm Using Microfluidic System Integrated GaP Photodiodes. Advances in OptoElectronics, 2011, 2011, 1-4.	0.6	0
49	Capillary Electrophoresis Food Chemistry Applications. , 2018, , .		0
50	Chemical Food Safety Applications of Capillary Electrophoresis Methodologies. Current and Future Developments in Food Science, 2022, , 388-449.	0.1	0