
Tlekkabul Ramazanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039810/publications.pdf Version: 2024-02-01

TIEKKABIII RAMAZANOV

#	Article	IF	CITATIONS
1	Effective screened potentials of strongly coupled semiclassical plasma. Physics of Plasmas, 2002, 9, 3758-3761.	1.9	159
2	Theoretical foundations of quantum hydrodynamics for plasmas. Physics of Plasmas, 2018, 25, .	1.9	119
3	Effective polarization interaction potential "charge-atom―for partially ionized dense plasma. Physics of Plasmas, 2005, 12, 092702.	1.9	114
4	Statically screened ion potential and Bohm potential in a quantum plasma. Physics of Plasmas, 2015, 22,	1.9	94
5	Quantum hydrodynamics for plasmas— <i>Quo vadis</i> ?. Physics of Plasmas, 2019, 26, .	1.9	76
6	Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma. Physical Review E, 2015, 92, 023104.	2.1	55
7	Structural characteristics of strongly coupled ions in a dense quantum plasma. Physical Review E, 2018, 98, 023207.	2.1	51
8	Dynamical structure factor of strongly coupled ions in a dense quantum plasma. Physical Review E, 2019, 99, 053203.	2.1	37
9	lon potential in warm dense matter: Wake effects due to streaming degenerate electrons. Physical Review E, 2015, 91, 023102.	2.1	35
10	Cross sections and transport coefficients of dense partially ionized semiclassical plasma. Journal of Physics A, 2006, 39, 4335-4340.	1.6	30
11	A scattering cross-section and ionization equilibrium in dense metal plasmas. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 214049.	2.1	30
12	Dynamical Screening and Wake Effects in Classical, Quantum, and Ultrarelativistic Plasmas. Contributions To Plasma Physics, 2015, 55, 186-191.	1.1	30
13	Multipole expansion in plasmas: Effective interaction potentials between compound particles. Physical Review E, 2016, 93, 053204.	2.1	26
14	Ion energy-loss characteristics and friction in a free-electron gas at warm dense matter and nonideal dense plasma conditions. Physical Review E, 2020, 101, 053203.	2.1	24
15	Dynamical properties of non-ideal plasma on the basis of effective potentials. Physics of Plasmas, 2013, 20, .	1.9	23
16	Interaction between glow discharge plasma and dust particles. Thermophysics and Aeromechanics, 2011, 18, 615-627.	0.5	22
17	Effect of dust particle polarization on scattering processes in complex plasmas. Physics of Plasmas, 2015, 22, 063703.	1.9	22
18	Investigation of Coulomb Logarithm and Relaxation Processes in Dense Plasma on the Basis of Effective Potentials. Contributions To Plasma Physics, 2015, 55, 271-276.	1.1	21

Tlekkabul Ramazanov

#	Article	IF	CITATIONS
19	Microscopic and thermodynamic properties of dense semiclassical partially ionized hydrogen plasma. Journal of Physics A, 2006, 39, 4469-4474.	1.6	20
20	Scattering cross sections of the particles in the partially ionized dense nonideal plasmas. Physics of Plasmas, 2017, 24, .	1.9	20
21	Notes on Anomalous Quantum Wake Effects. Contributions To Plasma Physics, 2016, 56, 442-447.	1.1	19
22	Classical scattering and stopping power in dense plasmas: the effect of diffraction and dynamic screening. Laser and Particle Beams, 2016, 34, 457-466.	1.0	19
23	Dust Particle Evolution in the Divertor Plasma. IEEE Transactions on Plasma Science, 2016, 44, 525-527.	1.3	15
24	Pair Interaction Potential of Particles for Twoâ€Component Plasma. Contributions To Plasma Physics, 2012, 52, 207-210.	1.1	14
25	Manipulation of Dusty Plasma Properties via Driving Voltage Waveform Tailoring in a Capacitive Radiofrequency Discharge. IEEE Transactions on Plasma Science, 2016, 44, 545-548.	1.3	13
26	Charging of a Dust Particle in a Magnetized Gas Discharge Plasma. IEEE Transactions on Plasma Science, 2019, 47, 3052-3056.	1.3	13
27	Rotation of Dust Structures in a Magnetic Field in a DC Glow Discharge. IEEE Transactions on Plasma Science, 2019, 47, 3036-3040.	1.3	13
28	The Effect of Magnetic Field on Dust Dynamic in the Edge Fusion Plasma. IEEE Transactions on Plasma Science, 2018, 46, 832-834.	1.3	12
29	Dynamical conductivity of the dense semiclassical plasmas on the basis of the effective potential. Physics of Plasmas, 2018, 25, .	1.9	10
30	Effective Polarization Potential and Scattering Processes in a Partially Ionized Plasma. Contributions To Plasma Physics, 2007, 47, 267-271.	1.1	9
31	Investigation of Synthesis of Carbon Nanowalls by the Chemical Vapor Deposition Method in the Plasma of a Radio Frequency Capacitive Discharge. IEEE Transactions on Plasma Science, 2019, 47, 3044-3046.	1.3	8
32	Experimental Investigation of the Properties of Plasma-Dust Formations on Pulsed Plasma Accelerator. IEEE Transactions on Plasma Science, 2019, 47, 3047-3051.	1.3	7
33	The Effect of Non-Thermal Atmospheric Pressure Plasma Treatment of Wheat Seeds on Germination Parameters and α-Amylase Enzyme Activity. IEEE Transactions on Plasma Science, 2022, 50, 330-340.	1.3	7
34	Structural Properties of Buffer and Complex Plasmas in RF Gas Discharge-Imposed Electrostatic Field. IEEE Transactions on Plasma Science, 2016, 44, 469-472.	1.3	6
35	Grain surface heating in cryogenic environment. Physics of Plasmas, 2017, 24, 050701.	1.9	6
36	Generation and Diagnostics of Pulse Plasma Flows. Plasma Physics Reports, 2020, 46, 465-471.	0.9	6

Tlekkabul Ramazanov

#	Article	IF	CITATIONS
37	Interaction between ions in hot dense plasma via screened Cornell potential. Physics of Plasmas, 2016, 23, .	1.9	5
38	lon core effect on scattering processes in dense plasmas. Physics of Plasmas, 2021, 28, .	1.9	5
39	Effect of Dipoleâ€Dipole Interaction on the Compressional Oscillations in Twoâ€Dimensional Yukawa liquids. Contributions To Plasma Physics, 2016, 56, 391-396.	1.1	4
40	Kinetic ionization and recombination coefficients in the dense semiclassical plasmas on the basis of the effective interaction potential. Journal of Physics: Conference Series, 2019, 1400, 077035.	0.4	4
41	Melting, freezing, and dynamics of two-dimensional dipole systems in screening bulk media. Physical Review E, 2020, 102, 033205.	2.1	4
42	Effect of dynamic screening on the electron capture process in nonideal plasma. Journal of Physics: Conference Series, 2019, 1385, 012031.	0.4	4
43	Plasma-dust structures in He-Ar DC glow discharge. Bulletin of the Lebedev Physics Institute, 2012, 39, 7-11.	0.6	3
44	Electron–atom interactions in dense semiclassical helium plasma. Physics of Plasmas, 2022, 29, 012101.	1.9	3
45	Effective Potentials for Chargeâ€Helium and Chargeâ€Singlyâ€Ionized Helium Interactions in a Dense Plasma. Contributions To Plasma Physics, 2016, 56, 411-418.	1.1	2
46	Synthesis of Microparticles With Narrow Size Distribution in the Plasma of Arc and Radio-Frequency Discharges. IEEE Transactions on Plasma Science, 2016, 44, 870-873.	1.3	2
47	Scattering of Dust Particles With Nonzero Dipole Moments. IEEE Transactions on Plasma Science, 2016, 44, 568-570.	1.3	2
48	Simulation of Dynamic Characteristics of Beryllium, Carbon, and Tungsten Dust in the Edge Fusion Plasma. IEEE Transactions on Plasma Science, 2019, 47, 3041-3043.	1.3	2
49	Surface Waves in a Collisional Quark-Gluon Plasma. Physics of Particles and Nuclei Letters, 2020, 17, 803-808.	0.4	2
50	Collision between a charged particle and a polarizable neutral particle in plasmas. Physics of Plasmas, 2020, 27, 044502.	1.9	2
51	Rotation of dust particles in an inhomogeneous weak magnetic field in a DC glow discharge. Physics of Plasmas, 2021, 28, 074503.	1.9	2
52	Investigation of Hydrodynamic Properties of Hot Dense Plasma. Physics of Wave Phenomena, 2018, 26, 327-333.	1.1	1
53	Investigation of the Evolution of Be, Ni, Mo, and W Dust Grains in Fusion Plasma. Plasma Physics Reports, 2021, 47, 92-95.	0.9	1
54	Non-local Effects in a Stratified Glow Discharge With Dusty Particles. AIP Conference Proceedings, 2008, , .	0.4	0

#	Article	IF	CITATIONS
55	Effective Interaction Potentials and Physical Properties of Complex Plasmas. , 2009, , .		Ο
56	Electrodynamic Properties of Dense Semiclassical Plasmas. IEEE Transactions on Plasma Science, 2016, 44, 501-504.	1.3	0
57	Over the barrier electron transfer from a micron sized charged dust particle to an ion in gas discharge plasmas. Physics of Plasmas, 2017, 24, 064501.	1.9	Ο
58	Ring dust structures in a weak inhomogeneous magnetic field. Contributions To Plasma Physics, 0, , .	1.1	0
59	Preliminary Study of the Solid-State Pulsed Plasma Thruster Model with Graphite as а Propellant. Plasma Physics Reports, 2022, 48, 263-270.	0.9	0