
Josip Blonder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10392290/publications.pdf Version: 2024-02-01

LOSID RIGNDED

#	Article	IF	CITATIONS
1	Enrichment of Integral Membrane Proteins for Proteomic Analysis Using Liquid Chromatographyâ^Tandem Mass Spectrometry. Journal of Proteome Research, 2002, 1, 351-360.	3.7	226
2	ldentification of a Dynamic Mitochondrial Protein Complex Driving Cholesterol Import, Trafficking, and Metabolism to Steroid Hormones. Molecular Endocrinology, 2012, 26, 1868-1882.	3.7	211
3	A detergent- and cyanogen bromide-free method for integral membrane proteomics: Application toHalobacterium purple membranes and the human epidermal membrane proteome. Proteomics, 2004, 4, 31-45.	2.2	140
4	180 Stable Isotope Labeling in MS-based Proteomics. Briefings in Functional Genomics & Proteomics, 2009, 8, 136-144.	3.8	105
5	High-Efficiency On-Line Solid-Phase Extraction Coupling to 15â^'150-μ4m-i.d. Column Liquid Chromatography for Proteomic Analysis. Analytical Chemistry, 2003, 75, 3596-3605.	6.5	104
6	Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nature Protocols, 2006, 1, 2784-2790.	12.0	100
7	Affinity Labeling of Highly Hydrophobic Integral Membrane Proteins for Proteome-Wide Analysis. Journal of Proteome Research, 2003, 2, 153-161.	3.7	81
8	Proteomic analysis of detergent-resistant membrane rafts. Electrophoresis, 2004, 25, 1307-1318.	2.4	78
9	A Proteomic Characterization of the Plasma Membrane of Human Epidermis by High-Throughput Mass Spectrometry. Journal of Investigative Dermatology, 2004, 123, 691-699.	0.7	76
10	Quantitative Profiling of the Detergent-Resistant Membrane Proteome of Iota-b Toxin Induced Vero Cells. Journal of Proteome Research, 2005, 4, 523-531.	3.7	75
11	Approaching Solid Tumor Heterogeneity on a Cellular Basis by Tissue Proteomics Using Laser Capture Microdissection and Biological Mass Spectrometry. Journal of Proteome Research, 2009, 8, 2310-2318.	3.7	75
12	Proteomic Analysis of Plasma Membrane from Hypoxia-Adapted Malignant Melanoma. Journal of Proteome Research, 2006, 5, 2996-3007.	3.7	62
13	On-Column Sample Enrichment for Capillary Electrophoresis Sheathless Electrospray Ionization Mass Spectrometry:Â Evaluation for Peptide Analysis and Protein Identification. Analytical Chemistry, 2003, 75, 5984-5993.	6.5	61
14	Quantitative analysis of the low molecular weight serum proteome using 18O stable isotope labeling in a lung tumor xenograft mouse model. Journal of the American Society for Mass Spectrometry, 2005, 16, 1221-1230.	2.8	59
15	Global Analysis of the Cortical Neuron Proteome. Molecular and Cellular Proteomics, 2004, 3, 896-907.	3.8	58
16	Targeting and Insertion of the Cholesterol-Binding Translocator Protein into the Outer Mitochondrial Membrane. Biochemistry, 2009, 48, 6909-6920.	2.5	57
17	Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2009, 1216, 1825-1837.	3.7	56
18	Global Analysis of the Membrane Subproteome ofPseudomonas aeruginosaUsing Liquid Chromatography-Tandem Mass Spectrometry. Journal of Proteome Research, 2004, 3, 434-444.	3.7	55

JOSIP BLONDER

#	Article	IF	CITATIONS
19	Combined Chemical and Enzymatic Stable Isotope Labeling for Quantitative Profiling of Detergent-Insoluble Membrane Proteins Isolated Using Triton X-100 and Brij-96. Journal of Proteome Research, 2006, 5, 349-360.	3.7	52
20	SASH1 Is a Scaffold Molecule in Endothelial TLR4 Signaling. Journal of Immunology, 2013, 191, 892-901.	0.8	51
21	CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins. PLoS ONE, 2012, 7, e51356.	2.5	47
22	Proteomic Analysis of Lipid Microdomains from Lipopolysaccharide-Activated Human Endothelial Cells. Journal of Proteome Research, 2005, 4, 349-357.	3.7	45
23	Combined Blood/Tissue Analysis for Cancer Biomarker Discovery: Application to Renal Cell Carcinoma. Analytical Chemistry, 2010, 82, 1584-1588.	6.5	41
24	Characterization and quantitation of membrane proteomes using multidimensional MS-based proteomic technologies. Expert Review of Proteomics, 2004, 1, 153-163.	3.0	35
25	Mass spectrometry in cancer biomarker research: a case for immunodepletion of abundant blood-derived proteins from clinical tissue specimens. Biomarkers in Medicine, 2014, 8, 269-286.	1.4	34
26	Optimization of protein solubilization for the analysis of the CD14 human monocyte membrane proteome using LC-MS/MS. Journal of Proteomics, 2009, 73, 112-122.	2.4	24
27	Comparative proteomics of a model MCF10A-KRasG12V cell line reveals a distinct molecular signature of the KRasG12V cell surface. Oncotarget, 2016, 7, 86948-86971.	1.8	23
28	Optimized Method for Computing ¹⁸ O/ ¹⁶ O Ratios of Differentially Stable-Isotope Labeled Peptides in the Context of Postdigestion ¹⁸ O Exchange/Labeling. Analytical Chemistry, 2010, 82, 5878-5886.	6.5	22
29	Nanoparticle physicochemical properties determine the activation of intracellular complement. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 266-275.	3.3	22
30	Proteomic investigation of natural killer cell microsomes using gas-phase fractionation by mass spectrometry. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 87-95.	2.3	21
31	Proteomic profiling of differentiating osteoblasts. Expert Review of Proteomics, 2006, 3, 483-496.	3.0	21
32	Proteomic Analysis of Frozen Tissue Samples Using Laser Capture Microdissection. Methods in Molecular Biology, 2013, 1002, 71-83.	0.9	21
33	Protein Modifications Regulate the Role of 14-3-3γ Adaptor Protein in cAMP-induced Steroidogenesis in MA-10 Leydig Cells. Journal of Biological Chemistry, 2014, 289, 26542-26553.	3.4	20
34	Analysis of Murine Natural Killer Cell Microsomal Proteins Using Two-Dimensional Liquid Chromatography Coupled to Tandem Electrospray Ionization Mass Spectrometry. Journal of Proteome Research, 2004, 3, 862-870.	3.7	19
35	Biomarker discovery: tissues versus fluids versus both. Expert Review of Molecular Diagnostics, 2007, 7, 473-475.	3.1	19
36	Molecular profiling of the human nasal epithelium: A proteomics approach. Journal of Proteomics, 2011, 75, 56-69.	2.4	19

JOSIP BLONDER

#	Article	IF	CITATIONS
37	Profiling Solid Tumor Heterogeneity by LCM and Biological MS of Fresh-Frozen Tissue Sections. Methods in Molecular Biology, 2011, 755, 95-106.	0.9	15
38	Profiling the erythrocyte membrane proteome isolated from patients diagnosed with chronic obstructive pulmonary disease. Journal of Proteomics, 2012, 76, 259-269.	2.4	13
39	Proteomic Profiling of H-Ras-G12V Induced Hypertrophic Cardiomyopathy in Transgenic Mice Using Comparative LC-MS Analysis of Thin Fresh-Frozen Tissue Sections. Journal of Proteome Research, 2012, 11, 1561-1570.	3.7	13
40	Steroidogenesis in MA-10 Mouse Leydig Cells Is Altered via Fatty Acid Import into the Mitochondria1. Biology of Reproduction, 2014, 91, 96.	2.7	11
41	Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers, 2021, 13, 3843.	3.7	7
42	Direct molecular dissection of tumor parenchyma from tumor stroma in tumor xenograft using mass spectrometry-based glycoproteomics. Oncotarget, 2018, 9, 26431-26452.	1.8	7
43	Identification of Sec23ip, Part of 14-3-3γ Protein Network, as a Regulator of Acute Steroidogenesis in MA-10 Leydig Cells. Endocrinology, 2020, 161, .	2.8	6
44	Preparation and Immunoaffinity Depletion of Fresh Frozen Tissue Homogenates for Mass Spectrometry-Based Proteomics in the Context of Drug Target/Biomarker Discovery. Methods in Molecular Biology, 2017, 1647, 71-90.	0.9	4
45	Cell surface protein enrichment for biomarker and drug target discovery using mass spectrometry-based proteomics. , 2020, , 409-420.		4
46	Tissue Sample Preparation for Proteomic Analysis. , 2013, , 39-50.		3
47	Comparative microsomal proteomics of a model lung cancer cell line NCI-H23 reveals distinct differences between molecular profiles of 3D and 2D cultured cells. Oncotarget, 2021, 12, 2022-2038.	1.8	3
48	Post-digestion 180 Exchange/Labeling for Quantitative Shotgun Proteomics of Membrane Proteins. Methods in Molecular Biology, 2012, 893, 223-240.	0.9	2
49	Trypsin-Mediated 180/160 Labeling for Biomarker Discovery. Methods in Molecular Biology, 2013, 1002, 133-149.	0.9	2
50	Protocol for the Analysis of Laser Capture Microdissected Fresh-Frozen Tissue Homogenates by Silver-Stained 1D SDS-PAGE. Methods in Molecular Biology, 2018, 1723, 95-110.	0.9	2
51	Tissue sample preparation for proteomic analysis. , 2020, , 39-52.		1