## Andrew Singleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10388857/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD.<br>Neuron, 2011, 72, 257-268.                                                  | 8.1  | 3,833     |
| 2  | <i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.                                                                          | 27.0 | 2,385     |
| 3  | New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.<br>Nature Genetics, 2010, 42, 105-116.                                 | 21.4 | 1,982     |
| 4  | Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478, 103-109.                                                    | 27.8 | 1,855     |
| 5  | The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology, 2011, 95, 629-635.                                                                            | 5.7  | 1,278     |
| 6  | Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.                                                                           | 27.8 | 772       |
| 7  | Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 2006, 23, 329-341.                                                     | 4.4  | 683       |
| 8  | Genomewide Association Studies and Human Disease. New England Journal of Medicine, 2009, 360,<br>1759-1768.                                                                 | 27.0 | 683       |
| 9  | Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain, 2009, 132, 1783-1794.                                                        | 7.6  | 612       |
| 10 | Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge.<br>Nature Genetics, 2010, 42, 142-148.                                 | 21.4 | 591       |
| 11 | Lewy bodies and parkinsonism in families withparkin mutations. Annals of Neurology, 2001, 50, 293-300.                                                                      | 5.3  | 479       |
| 12 | A Genome-Wide Association Study Identifies Protein Quantitative Trait Loci (pQTLs). PLoS Genetics,<br>2008, 4, e1000072.                                                    | 3.5  | 415       |
| 13 | Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature Genetics, 2011, 43, 1005-1011.                          | 21.4 | 403       |
| 14 | Population-Based Genome-wide Association Studies Reveal Six Loci Influencing Plasma Levels of Liver<br>Enzymes. American Journal of Human Genetics, 2008, 83, 520-528.      | 6.2  | 402       |
| 15 | Characterization of PLA2G6 as a locus for dystoniaâ€parkinsonism. Annals of Neurology, 2009, 65, 19-23.                                                                     | 5.3  | 399       |
| 16 | A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet, The, 2005, 365, 415-416.                                                                                 | 13.7 | 391       |
| 17 | Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurology, The, 2006, 5, 911-916. | 10.2 | 360       |
| 18 | Genome-Wide Association Study of Plasma Polyunsaturated Fatty Acids in the InCHIANTI Study. PLoS<br>Genetics, 2009, 5, e1000338.                                            | 3.5  | 351       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and<br>Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.                       | 6.2  | 333       |
| 20 | The Parkinson's progression markers initiative (PPMI) – establishing a PD biomarker cohort. Annals of Clinical and Translational Neurology, 2018, 5, 1460-1477.                                                              | 3.7  | 330       |
| 21 | Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau <sub>181</sub> , and α-Synuclein Levels<br>With Clinical Features of Drug-Naive Patients With Early Parkinson Disease. JAMA Neurology, 2013, 70,<br>1277-87. | 9.0  | 318       |
| 22 | Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia–like<br>Syndrome Without Bone Involvement. JAMA Neurology, 2013, 70, 78.                                                         | 9.0  | 311       |
| 23 | Genetics of Parkinson's disease and parkinsonism. Annals of Neurology, 2006, 60, 389-398.                                                                                                                                    | 5.3  | 281       |
| 24 | GWAS of Longevity in CHARGE Consortium Confirms APOE and FOXO3 Candidacy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 110-118.                                                    | 3.6  | 250       |
| 25 | Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.                                                                                                                                | 12.8 | 250       |
| 26 | Genetic screening for a single common LRRK2 mutation in familial Parkinson's disease. Lancet, The, 2005, 365, 410-412.                                                                                                       | 13.7 | 243       |
| 27 | Earlyâ€onset Parkinson's disease caused by a compound heterozygous DJâ€1 mutation. Annals of<br>Neurology, 2003, 54, 271-274.                                                                                                | 5.3  | 233       |
| 28 | Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell, 2011, 10, 868-878.                                                                                  | 6.7  | 230       |
| 29 | Genome-wide Association Study of Vitamin B6, Vitamin B12, Folate, and Homocysteine Blood<br>Concentrations. American Journal of Human Genetics, 2009, 84, 477-482.                                                           | 6.2  | 225       |
| 30 | Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.                                                                                | 14.8 | 213       |
| 31 | Genome-wide SNP assay reveals structural genomic variation, extended homozygosity and cell-line induced alterations in normal individuals. Human Molecular Genetics, 2007, 16, 1-14.                                         | 2.9  | 211       |
| 32 | Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurology, The, 2007, 6, 322-328.                                        | 10.2 | 206       |
| 33 | A Nonsense Mutation in COQ9 Causes Autosomal-Recessive Neonatal-Onset Primary Coenzyme Q10<br>Deficiency: A Potentially Treatable Form of Mitochondrial Disease. American Journal of Human<br>Genetics, 2009, 84, 558-566.   | 6.2  | 206       |
| 34 | Common Variation in the β-Carotene 15,15′-Monooxygenase 1 Gene Affects Circulating Levels of<br>Carotenoids: A Genome-wide Association Study. American Journal of Human Genetics, 2009, 84, 123-133.                         | 6.2  | 203       |
| 35 | Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiology of Aging, 2010, 31, 725-731.                                                       | 3.1  | 196       |
| 36 | Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.                                                                      | 10.2 | 195       |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | CSF biomarkers associated with disease heterogeneity in early Parkinson's disease: the Parkinson's<br>Progression Markers Initiative study. Acta Neuropathologica, 2016, 131, 935-949. | 7.7  | 190       |
| 38 | Parkinson's disease and αâ€synuclein expression. Movement Disorders, 2011, 26, 2160-2168.                                                                                              | 3.9  | 186       |
| 39 | Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.                 | 2.9  | 178       |
| 40 | A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release.<br>Lancet Neurology, The, 2007, 6, 414-420.                                       | 10.2 | 175       |
| 41 | Whole Genome Analyses Suggest Ischemic Stroke and Heart Disease Share an Association With Polymorphisms on Chromosome 9p21. Stroke, 2008, 39, 1586-1589.                               | 2.0  | 153       |
| 42 | Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. PLoS Medicine, 2017, 14, e1002314.                                   | 8.4  | 152       |
| 43 | A genome-wide association analysis of serum iron concentrations. Blood, 2010, 115, 94-96.                                                                                              | 1.4  | 142       |
| 44 | Longitudinal Change of Clinical and Biological Measures in Early Parkinson's Disease: Parkinson's<br>Progression Markers Initiative Cohort. Movement Disorders, 2018, 33, 771-782.     | 3.9  | 136       |
| 45 | Spinocerebellar Ataxia Type 3 Phenotypically Resembling Parkinson Disease in a Black Family. Archives of Neurology, 2001, 58, 296.                                                     | 4.5  | 135       |
| 46 | Emerging pathways in genetic Parkinson's disease: Potential role of ceramide metabolism in Lewy body<br>disease. FEBS Journal, 2008, 275, 5767-5773.                                   | 4.7  | 121       |
| 47 | Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo<br>Parkinson disease. PLoS ONE, 2017, 12, e0175674.                                   | 2.5  | 110       |
| 48 | A Meta-analysis of Gene Expression Signatures of Blood Pressure and Hypertension. PLoS Genetics, 2015, 11, e1005035.                                                                   | 3.5  | 107       |
| 49 | G2019S dardarin substitution is a common cause of Parkinson's disease in a Portuguese cohort.<br>Movement Disorders, 2005, 20, 1653-1655.                                              | 3.9  | 106       |
| 50 | A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Human<br>Molecular Genetics, 2009, 18, 1524-1532.                                                 | 2.9  | 106       |
| 51 | The dardarin G2019S mutation is a common cause of Parkinson's disease but not other neurodegenerative diseases. Neuroscience Letters, 2005, 389, 137-139.                              | 2.1  | 105       |
| 52 | Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson's disease.<br>Journal of Neurochemistry, 2005, 93, 246-256.                                  | 3.9  | 103       |
| 53 | The tau H2 haplotype is almost exclusively Caucasian in origin. Neuroscience Letters, 2004, 369, 183-185.                                                                              | 2.1  | 102       |
| 54 | Genes and parkinsonism. Lancet Neurology, The, 2003, 2, 221-228.                                                                                                                       | 10.2 | 98        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Portugal.<br>Neurobiology of Aging, 2009, 30, 1515-1517.                                                                                            | 3.1  | 97        |
| 56 | Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset.<br>Npj Parkinson's Disease, 2019, 5, 8.                                                                                              | 5.3  | 95        |
| 57 | Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation<br>carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. Lancet<br>Neurology, The, 2020, 19, 71-80. | 10.2 | 94        |
| 58 | Phenomenology of ?Lubag? or X-linked dystonia-parkinsonism. Movement Disorders, 2002, 17, 1271-1277.                                                                                                                                       | 3.9  | 92        |
| 59 | The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Human Molecular Genetics, 2004, 13, 123R-126.                                                      | 2.9  | 86        |
| 60 | Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease. Neurobiology of Aging, 2012, 33, 1008.e17-1008.e23.                                                         | 3.1  | 86        |
| 61 | Application of Genome-Wide Single Nucleotide Polymorphism Typing: Simple Association and Beyond.<br>PLoS Genetics, 2006, 2, e150.                                                                                                          | 3.5  | 85        |
| 62 | Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling.<br>Trends in Neurosciences, 2010, 33, 211-219.                                                                                          | 8.6  | 81        |
| 63 | The Evolution of Genetics: Alzheimer's and Parkinson's Diseases. Neuron, 2016, 90, 1154-1163.                                                                                                                                              | 8.1  | 81        |
| 64 | Parkinson's disease and dementia with Lewy bodies: a difference in dose?. Lancet, The, 2004, 364,<br>1105-1107.                                                                                                                            | 13.7 | 80        |
| 65 | A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Human<br>Molecular Genetics, 2011, 20, R158-R162.                                                                                               | 2.9  | 79        |
| 66 | Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and<br>Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.                                                                        | 3.1  | 78        |
| 67 | Ethnic differences in the expression of neurodegenerative disease: Machado-Joseph disease in Africans and Caucasians. Movement Disorders, 2002, 17, 1068-1071.                                                                             | 3.9  | 77        |
| 68 | Primary hyperhidrosis. Clinical Autonomic Research, 2003, 13, 96-98.                                                                                                                                                                       | 2.5  | 74        |
| 69 | Torsin A haplotype predisposes to idiopathic dystonia. Annals of Neurology, 2005, 57, 765-767.                                                                                                                                             | 5.3  | 73        |
| 70 | Analysis of an earlyâ€onset Parkinson's disease cohort for DJâ€1 mutations. Movement Disorders, 2004, 19,<br>796-800.                                                                                                                      | 3.9  | 71        |
| 71 | Analysis of IFT74as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology, 2006, 6, 44.                                                                                                                                         | 1.8  | 70        |
| 72 | Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease<br>resilience. Genome Medicine, 2017, 9, 100.                                                                                       | 8.2  | 67        |

| #  | Article                                                                                                                                                                                                                                                              | IF        | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 73 | SCA15 Due to Large ITPR1 Deletions in a Cohort of 333 White Families With Dominant Ataxia. Archives of Neurology, 2011, 68, 637-43.                                                                                                                                  | 4.5       | 65             |
| 74 | Glucocerebrosidase mutations are also found in subjects with early-onset parkinsonism from Venezuela. Movement Disorders, 2006, 21, 282-283.                                                                                                                         | 3.9       | 64             |
| 75 | Familial Parkinsonism and early onset Parkinson's disease in a Brazilian movement disorders clinic:<br>Phenotypic characterization and frequency of <i>SNCA</i> , <i>PRKN</i> , <i>PINK1</i> , and <i>LRRK2</i><br>mutations. Movement Disorders, 2009, 24, 662-666. | 3.9       | 63             |
| 76 | How genetics research in Parkinson's disease is enhancing understanding of the common idiopathic forms of the disease. Current Opinion in Neurology, 2005, 18, 706-711.                                                                                              | 3.6       | 62             |
| 77 | Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. Remote<br>Sensing, 2015, 7, 9542-9562.                                                                                                                                    | 4.0       | 62             |
| 78 | Analysis of Nigerians with Apparently Sporadic Parkinson Disease for Mutations in LRRK2, PRKN and ATXN3. PLoS ONE, 2008, 3, e3421.                                                                                                                                   | 2.5       | 61             |
| 79 | TDP-43 Is Not a Common Cause of Sporadic Amyotrophic Lateral Sclerosis. PLoS ONE, 2008, 3, e2450.                                                                                                                                                                    | 2.5       | 60             |
| 80 | A systematic screening to identify <i>de novo</i> mutations causing sporadic early-onset Parkinson's disease. Human Molecular Genetics, 2015, 24, 6711-6720.                                                                                                         | 2.9       | 59             |
| 81 | A Rare Truncating Mutation in ADH1C (G78Stop) Shows Significant Association With Parkinson Disease in a Large International Sample. Archives of Neurology, 2005, 62, 74.                                                                                             | 4.5       | 57             |
| 82 | Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Human Molecular Genetics, 2014, 23, R47-R53.                                                                                                         | 2.9       | 57             |
| 83 | Advancing age is associated with gene expression changes resembling mTOR inhibition: Evidence from two human populations. Mechanisms of Ageing and Development, 2012, 133, 556-562.                                                                                  | 4.6       | 54             |
| 84 | Investigating the role of rare coding variability in Mendelian dementia genes ( APP , PSEN1 , PSEN2 , GRN) Tj ETQ                                                                                                                                                    | 90,00 rgl | 3T /Qverlock 1 |
| 85 | Analysis of Parkinson disease patients from Portugal for mutations in SNCA, PRKN, PINK1 and LRRK2.<br>BMC Neurology, 2008, 8, 1.                                                                                                                                     | 1.8       | 52             |
| 86 | Genetic Variability in CLU and Its Association with Alzheimer's Disease. PLoS ONE, 2010, 5, e9510.                                                                                                                                                                   | 2.5       | 52             |
| 87 | Conflicting Results Regarding the Semaphorin Gene (SEMA5A) and the Risk for Parkinson Disease.<br>American Journal of Human Genetics, 2006, 78, 1082-1083.                                                                                                           | 6.2       | 50             |
| 88 | Sequential Use of Transcriptional Profiling, Expression Quantitative Trait Mapping, and Gene<br>Association Implicates MMP20 in Human Kidney Aging. PLoS Genetics, 2009, 5, e1000685.                                                                                | 3.5       | 50             |
| 89 | Association of α-synuclein Rep1 polymorphism and Parkinson's disease: Influence of Rep1 on age at onset. Movement Disorders, 2006, 21, 534-539.                                                                                                                      | 3.9       | 49             |
| 90 | Genome-wide association studies in neurological disorders. Lancet Neurology, The, 2008, 7, 1067-1072.                                                                                                                                                                | 10.2      | 49             |

6

| #   | Article                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiology of Aging, 2015, 36, 2904.e13-2904.e26.                                                                                                         | 3.1  | 48        |
| 92  | Shared biological pathways for frailty and cognitive impairment: A systematic review. Ageing Research<br>Reviews, 2018, 47, 149-158.                                                                                                                                                           | 10.9 | 48        |
| 93  | Clinical and Dopamine Transporter Imaging Characteristics of Leucine Rich Repeat Kinase 2 (LRRK2) and<br>Glucosylceramidase Beta (GBA) Parkinson's Disease Participants in the Parkinson's Progression<br>Markers Initiative: A Crossâ€5ectional Study. Movement Disorders, 2020, 35, 833-844. | 3.9  | 48        |
| 94  | The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population‧pecific Risk,<br>Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34,<br>1851-1863.                                                                             | 3.9  | 47        |
| 95  | Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. European<br>Journal of Human Genetics, 2001, 9, 659-666.                                                                                                                                              | 2.8  | 46        |
| 96  | Genomewide SNP assay reveals mutations underlying Parkinson disease. Human Mutation, 2008, 29, 315-322.                                                                                                                                                                                        | 2.5  | 46        |
| 97  | Candidate Gene Polymorphisms for Ischemic Stroke. Stroke, 2009, 40, 3436-3442.                                                                                                                                                                                                                 | 2.0  | 46        |
| 98  | Genetics of early-onset Parkinson's disease in Finland: exome sequencing and genome-wide association study. Neurobiology of Aging, 2017, 53, 195.e7-195.e10.                                                                                                                                   | 3.1  | 46        |
| 99  | Identification of PSEN1 and PSEN2 gene mutations and variants in Turkish dementia patients.<br>Neurobiology of Aging, 2012, 33, 1850.e17-1850.e27.                                                                                                                                             | 3.1  | 44        |
| 100 | Initial Assessment of the Pathogenic Mechanisms of the Recently Identified Alzheimer Risk Loci. Annals<br>of Human Genetics, 2013, 77, 85-105.                                                                                                                                                 | 0.8  | 41        |
| 101 | Identical twins with the <i>C9orf72</i> repeat expansion are discordant for ALS. Neurology, 2014, 83, 1476-1478.                                                                                                                                                                               | 1.1  | 40        |
| 102 | Characterization of Recessive Parkinson Disease in a Large Multicenter Study. Annals of Neurology,<br>2020, 88, 843-850.                                                                                                                                                                       | 5.3  | 40        |
| 103 | A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.                                                                                                                                                                                 | 7.6  | 39        |
| 104 | An evaluation of the Team Objective Structured Clinical Examination (TOSCE). Medical Education, 1999, 33, 34-41.                                                                                                                                                                               | 2.1  | 37        |
| 105 | Xâ€ŀinked dystonia ("Lubagâ€) presenting predominantly with parkinsonism: A more benign phenotype?.<br>Movement Disorders, 2002, 17, 200-202.                                                                                                                                                  | 3.9  | 37        |
| 106 | Genetic susceptibility in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of<br>Disease, 2009, 1792, 597-603.                                                                                                                                                             | 3.8  | 37        |
| 107 | Mutation analysis of patients with neurodegenerative disorders using NeuroX array. Neurobiology of Aging, 2015, 36, 545.e9-545.e14.                                                                                                                                                            | 3.1  | 36        |
| 108 | The <i>TOR1A</i> polymorphism rs1182 and the risk of spread in primary blepharospasm. Movement Disorders, 2009, 24, 613-616.                                                                                                                                                                   | 3.9  | 35        |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genome-wide assessment of Parkinson's disease in a Southern Spanish population. Neurobiology of Aging, 2016, 45, 213.e3-213.e9.                                                                                         | 3.1 | 35        |
| 110 | Anticholinergic Drug Induced Cognitive and Physical Impairment: Results from the InCHIANTI Study.<br>Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 995-1002.                   | 3.6 | 34        |
| 111 | Anatomy of Subsidence in Tianjin from Time Series InSAR. Remote Sensing, 2016, 8, 266.                                                                                                                                  | 4.0 | 33        |
| 112 | Parkin disease in a Brazilian kindred: Manifesting heterozygotes and clinical follow-up over 10 years.<br>Movement Disorders, 2005, 20, 479-484.                                                                        | 3.9 | 32        |
| 113 | Clinical features, with video documentation, of the original familial lewy body parkinsonism caused by αâ€synuclein triplication (Iowa kindred). Movement Disorders, 2011, 26, 2134-2136.                               | 3.9 | 32        |
| 114 | Novel progranulin mutation: Screening for PGRN mutations in a Portuguese series of FTD/CBS cases.<br>Movement Disorders, 2008, 23, 1269-1273.                                                                           | 3.9 | 30        |
| 115 | Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer's disease. Neurobiology of Aging, 2018, 62, 244.e1-244.e8.                                                                                  | 3.1 | 30        |
| 116 | NOTCH3 Variants and Risk of Ischemic Stroke. PLoS ONE, 2013, 8, e75035.                                                                                                                                                 | 2.5 | 30        |
| 117 | Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.                                                                                                            | 4.4 | 29        |
| 118 | Exome sequencing identifies 2 novel presenilin 1 mutations (p.L166V and p.S230R) in British early-onset<br>Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2422.e13-2422.e16.                                     | 3.1 | 28        |
| 119 | Shared mechanisms for cognitive impairment and physical frailty: A model for complex systems.<br>Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12027.                          | 3.7 | 28        |
| 120 | Genetic and Phenotypic Basis of Autosomal Dominant Parkinson's Disease in a Large Multi-Center<br>Cohort. Frontiers in Neurology, 2020, 11, 682.                                                                        | 2.4 | 28        |
| 121 | Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta<br>Neuropathologica Communications, 2020, 8, 5.                                                                                  | 5.2 | 27        |
| 122 | Paraoxonase 1 (PON1) gene polymorphisms and Parkinson's disease in a Finnish population.<br>Neuroscience Letters, 2004, 367, 168-170.                                                                                   | 2.1 | 26        |
| 123 | Whole blood gene expression and interleukin-6 levels. Genomics, 2014, 104, 490-495.                                                                                                                                     | 2.9 | 24        |
| 124 | Linkage Disequilibrium and Association Analysis of ?-Synuclein and Alcohol and Drug Dependence in<br>Two American Indian Populations. Alcoholism: Clinical and Experimental Research, 2007, 31,<br>070212174136004-???. | 2.4 | 23        |
| 125 | A thorough assessment of benign genetic variability in <i>GRN</i> and <i>MAPT</i> . Human Mutation, 2010, 31, E1126-E1140.                                                                                              | 2.5 | 23        |
| 126 | Gene expression markers of age-related inflammation in two human cohorts. Experimental<br>Gerontology, 2015, 70, 37-45.                                                                                                 | 2.8 | 23        |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Longitudinal Measurements of Glucocerebrosidase activity in Parkinson's patients. Annals of Clinical and Translational Neurology, 2020, 7, 1816-1830.                                                   | 3.7  | 23        |
| 128 | Neurofibrillary tau pathology modulated by genetic variation of α <i>â€synuclein</i> . Annals of Neurology, 2008, 64, 348-352.                                                                          | 5.3  | 22        |
| 129 | Kinase signaling pathways as potential targets in the treatment of Parkinson's disease. Expert Review of Proteomics, 2007, 4, 783-792.                                                                  | 3.0  | 21        |
| 130 | Mutation analysis of sporadic early-onset Alzheimer's disease using the NeuroX array. Neurobiology of Aging, 2017, 49, 215.e1-215.e8.                                                                   | 3.1  | 21        |
| 131 | Ethnic Differences and Disease Phenotypes. Science, 2003, 300, 739-740.                                                                                                                                 | 12.6 | 20        |
| 132 | A consanguineous Turkish family with early-onset Parkinson's disease and an exon 4 parkin deletion.<br>Movement Disorders, 2004, 19, 812-816.                                                           | 3.9  | 20        |
| 133 | Multiple system atrophy: the application of genetics in understanding etiology. Clinical Autonomic Research, 2015, 25, 19-36.                                                                           | 2.5  | 20        |
| 134 | Mutation Frequency of the Major Frontotemporal Dementia Genes, MAPT, GRN and C9ORF72 in a<br>Turkish Cohort of Dementia Patients. PLoS ONE, 2016, 11, e0162592.                                         | 2.5  | 19        |
| 135 | Smell testing is abnormal in â€~lubag' or X-linked dystonia-parkinsonism: a pilot study. Parkinsonism and<br>Related Disorders, 2004, 10, 407-410.                                                      | 2.2  | 18        |
| 136 | Defining the ends of Parkin exon 4 deletions in two different families with Parkinson's disease.<br>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 133B, 120-123.        | 1.7  | 18        |
| 137 | Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism and Related Disorders, 2003, 9, 317-320.                                                                                | 2.2  | 15        |
| 138 | APOE and AβPP Gene Variation in Cortical and Cerebrovascular Amyloid-β Pathology and Alzheimer's<br>Disease: A Population-Based Analysis. Journal of Alzheimer's Disease, 2011, 26, 377-385.            | 2.6  | 15        |
| 139 | Feasibility and safety of lumbar puncture in the Parkinson's disease research participants: Parkinson's<br>Progression Marker Initiative (PPMI). Parkinsonism and Related Disorders, 2019, 62, 201-209. | 2.2  | 15        |
| 140 | Genomic Risk Profiling of Ischemic Stroke: Results of an International Genome-Wide Association<br>Meta-Analysis. PLoS ONE, 2011, 6, e23161.                                                             | 2.5  | 14        |
| 141 | Blepharospasm: A genetic screening study in 132 patients. Parkinsonism and Related Disorders, 2019, 64, 315-318.                                                                                        | 2.2  | 13        |
| 142 | A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of<br>Aging, 2019, 75, 223.e1-223.e10.                                                                  | 3.1  | 13        |
| 143 | Amyotrophic Lateral Sclerosis: An Emerging Era of Collaborative Gene Discovery. PLoS ONE, 2007, 2, e1254.                                                                                               | 2.5  | 13        |
| 144 | Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies.<br>Neurobiology of Aging, 2017, 49, 214.e13-214.e15.                                                | 3.1  | 12        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | The Future of Genetic Analysis of Neurological Disorders. Neurobiology of Disease, 2000, 7, 65-69.                                                                                                                                     | 4.4  | 11        |
| 146 | Peripheral GRN mRNA and Serum Progranulin Levels as a Potential Indicator for Both the Presence of<br>Splice Site Mutations and Individuals at Risk for Frontotemporal Dementia. Journal of Alzheimer's<br>Disease, 2019, 67, 159-167. | 2.6  | 11        |
| 147 | Clinical Variability of SYNJ1-Associated Early-Onset Parkinsonism. Frontiers in Neurology, 2021, 12, 648457.                                                                                                                           | 2.4  | 11        |
| 148 | A Bayesian mathematical model of motor and cognitive outcomes in Parkinson's disease. PLoS ONE, 2017, 12, e0178982.                                                                                                                    | 2.5  | 11        |
| 149 | Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes. Human Molecular Genetics, 2015, 24, 1504-1512.                                                                      | 2.9  | 8         |
| 150 | No evidence for tau duplications in frontal temporal dementia families showing genetic linkage to the tau locus in which tau mutations have not been found. Neuroscience Letters, 2004, 363, 99-101.                                   | 2.1  | 7         |
| 151 | The HapMap. Archives of Neurology, 2008, 65, 319-21.                                                                                                                                                                                   | 4.5  | 7         |
| 152 | Splicing factor 3B1 hypomethylation is associated with altered SF3B1 transcript expression in older humans. Mechanisms of Ageing and Development, 2014, 135, 50-56.                                                                    | 4.6  | 7         |
| 153 | Exploring dementia and neuronal ceroid lipofuscinosis genes in 100 FTD-like patients from 6 towns and rural villages on the Adriatic Sea cost of Apulia. Scientific Reports, 2021, 11, 6353.                                           | 3.3  | 7         |
| 154 | Whole genome association studies: Deciding when persistence becomes perseveration. American<br>Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 131-133.                                                     | 1.7  | 6         |
| 155 | Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia–like<br>Syndrome Without Bone Involvement. JAMA Neurology, 0, , 1.                                                                         | 9.0  | 6         |
| 156 | Mutations in TYROBP are not a common cause of dementia in a Turkish cohort. Neurobiology of Aging, 2017, 58, 240.e1-240.e3.                                                                                                            | 3.1  | 6         |
| 157 | REPORTING AND INTERPRETATION OF GENETIC VARIANTS IN CASES AND CONTROLS. Neurology, 2007, 69, 111-112.                                                                                                                                  | 1.1  | 5         |
| 158 | Mutation of the Parkin gene in a Persian family: Clinical progression over a 40-year period. Movement<br>Disorders, 2005, 20, 887-890.                                                                                                 | 3.9  | 4         |
| 159 | Genome-wide association studies and ALS: are we there yet?. Lancet Neurology, The, 2007, 6, 841-843.                                                                                                                                   | 10.2 | 4         |
| 160 | Effects of Multiple Genetic Loci on Age atÂOnset in Frontotemporal Dementia. Journal of Alzheimer's<br>Disease, 2017, 56, 1271-1278.                                                                                                   | 2.6  | 4         |
| 161 | Prion genotypes in Central America suggest selection for the V129 allele. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 33-35.                                                                   | 1.7  | 3         |
| 162 | Susceptibility genes in movement disorders. Movement Disorders, 2008, 23, 927-934.                                                                                                                                                     | 3.9  | 2         |

| #   | Article                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Familiality in simple and complex disease. Clinical Autonomic Research, 2003, 13, 88-90.                                        | 2.5 | 1         |
| 164 | A simple and efficient algorithm for genomeâ€wide homozygosity analysis in disease. Molecular Systems<br>Biology, 2009, 5, 304. | 7.2 | 1         |