List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10388645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucose-based spiro-oxathiazoles as <i>in vivo</i> anti-hyperglycemic agents through glycogen phosphorylase inhibition. Organic and Biomolecular Chemistry, 2020, 18, 931-940.	2.8	5
2	Glycogen phosphorylase inhibitor, 2,3â€bis[(2E)â€3â€(4â€hydroxyphenyl)propâ€2â€enamido] butanedioic acid (BF142), improves baseline insulin secretion of MIN6 insulinoma cells. PLoS ONE, 2020, 15, e0236081.	2.5	3
3	A multidisciplinary study of 3-(β- d -glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors. European Journal of Medicinal Chemistry, 2018, 147, 266-278.	5.5	22
4	Glycogen phosphorylase inhibition improves beta cell function. British Journal of Pharmacology, 2018, 175, 301-319.	5.4	39
5	Nanomolar Inhibitors of Glycogen Phosphorylase Based on β-‹scp>d‹/scp>-Glucosaminyl Heterocycles: A Combined Synthetic, Enzyme Kinetic, and Protein Crystallography Study. Journal of Medicinal Chemistry, 2017, 60, 9251-9262.	6.4	18
6	Improved preparation of 4(5)-aryl-2-(β-d-glucopyranosyl)-imidazoles, the most efficient glucose analogue inhibitors of glycogen phosphorylase. RSC Advances, 2016, 6, 94787-94794.	3.6	10
7	Synthetic, enzyme kinetic, and protein crystallographic studies of C -β- d -glucopyranosyl pyrroles and imidazoles reveal and explain low nanomolar inhibition of human liver glycogen phosphorylase. European Journal of Medicinal Chemistry, 2016, 123, 737-745.	5.5	36
8	PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines. International Journal of Oncology, 2016, 48, 983-997.	3.3	5
9	C-Glucopyranosyl-1,2,4-triazol-5-ones: synthesis and inhibition of glycogen phosphorylase. Carbohydrate Research, 2016, 429, 128-134.	2.3	10
10	Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition. European Journal of Medicinal Chemistry, 2016, 108, 444-454.	5.5	69
11	Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity. Molecular Medicine Reports, 2015, 11, 2861-2867.	2.4	17
12	3-Glucosylated 5-amino-1,2,4-oxadiazoles: synthesis and evaluation as glycogen phosphorylase inhibitors. Beilstein Journal of Organic Chemistry, 2015, 11, 499-503.	2.2	8
13	Polymodal Transient Receptor Potential Vanilloid (TRPV) Ion Channels in Chondrogenic Cells. International Journal of Molecular Sciences, 2015, 16, 18412-18438.	4.1	30
14	C-(2-Deoxy-d-arabino-hex-1-enopyranosyl)-oxadiazoles: synthesis of possible isomers and their evaluation as glycogen phosphorylase inhibitors. Carbohydrate Research, 2015, 412, 71-79.	2.3	18
15	4(5)-Aryl-2- <i>C</i> -glucopyranosyl-imidazoles as New Nanomolar Glucose Analogue Inhibitors of Glycogen Phosphorylase. ACS Medicinal Chemistry Letters, 2015, 6, 1215-1219.	2.8	31
16	Computationally motivated synthesis and enzyme kinetic evaluation of N-(β-d-glucopyranosyl)-1,2,4-triazolecarboxamides as glycogen phosphorylase inhibitors. MedChemComm, 2015, 6, 80-89.	3.4	10
17	Synthesis of 4-amidomethyl-1-glucosyl-1,2,3-triazoles and evaluation as glycogen phosphorylase inhibitors. Carbohydrate Research, 2015, 402, 245-251.	2.3	19
18	Insulin Sensitivity is Modified by a Glycogen Phosphorylase Inhibitor: Glucopyranosylidene-Spiro-Thiohydantoin in Streptozotocin-Induced Diabetic Rats. Current Topics in Medicinal Chemistry, 2015, 15, 2390-2394.	2.1	29

#	Article	IF	CITATIONS
19	Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Signalling Exerts Chondrogenesis Promoting and Protecting Effects: Implication of Calcineurin as a Downstream Target. PLoS ONE, 2014, 9, e91541.	2.5	40
20	New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase. European Journal of Medicinal Chemistry, 2014, 76, 567-579.	5.5	39
21	Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cellular Signalling, 2014, 26, 468-482.	3.6	95
22	Glucopyranosylidene-spiro-iminothiazolidinone, a new bicyclic ring system: Synthesis, derivatization, and evaluation for inhibition of glycogen phosphorylase by enzyme kinetic and crystallographic methods. Bioorganic and Medicinal Chemistry, 2014, 22, 4028-4041.	3.0	10
23	Ser/Thr-phosphoprotein phosphatases in chondrogenesis: neglected components of a two-player game. Cellular Signalling, 2014, 26, 2175-2185.	3.6	19
24	Structure–Activity Relationships of Glycogen Phosphorylase Inhibitor FR258900 and Its Analogues: A Combined Synthetic, Enzyme Kinetics, and Computational Study. ChemPlusChem, 2014, 79, 1558-1568.	2.8	3
25	Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 594-602.	3.8	36
26	Synthesis of C-xylopyranosyl- and xylopyranosylidene-spiro-heterocycles as potential inhibitors of glycogen phosphorylase. Carbohydrate Research, 2014, 399, 38-48.	2.3	18
27	Synthesis of 2-(β-d-glucopyranosylamino)-5-substituted-1,3,4-oxadiazoles for inhibition of glycogen phosphorylase. Carbohydrate Research, 2013, 381, 196-204.	2.3	7
28	3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 743-751.	4.1	24
29	Synthesis of 2-(β-d-glucopyranosyl)-5-(substituted-amino)-1,3,4-oxa- and -thiadiazoles for the inhibition of glycogen phosphorylase. Carbohydrate Research, 2013, 381, 187-195.	2.3	11
30	Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells. Microvascular Research, 2013, 89, 86-94.	2.5	18
31	Synthesis of substituted 2-(β-d-glucopyranosyl)-benzimidazoles and their evaluation as inhibitors of glycogen phosphorylase. Carbohydrate Research, 2013, 381, 179-186.	2.3	16
32	Synthesis of tartaric acid analogues of FR258900 and their evaluation as glycogen phosphorylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1789-1792.	2.2	7
33	<i>C</i> -Glucopyranosyl-1,2,4-triazoles As New Potent Inhibitors of Glycogen Phosphorylase. ACS Medicinal Chemistry Letters, 2013, 4, 612-615.	2.8	39
34	Synthesis, enzyme kinetics and computational evaluation of N-(β-d-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 5738-5747.	3.0	17
35	Glycogen Phosphorylase Inhibitor N-(3,5-Dimethyl-Benzoyl)-N'-(β-D-Glucopyranosyl)Urea Improves Glucose Tolerance under Normoglycemic and Diabetic Conditions and Rearranges Hepatic Metabolism. PLoS ONE, 2013, 8, e69420.	2.5	39
36	Phosphatase 2A is involved in Adherens Junction (AJ) Regulation in Endothelial Cells. FASEB Journal, 2013, 27, Ib710.	0.5	0

#	Article	IF	CITATIONS
37	Calcineurin regulates endothelial barrier function by interaction with and dephosphorylation of myosin phosphatase. Cardiovascular Research, 2012, 96, 494-503.	3.8	23
38	Synthesis of 1,2,3-triazoles from xylosyl and 5-thioxylosyl azides: evaluation of the xylose scaffold for the design of potential glycogen phosphorylase inhibitors. Carbohydrate Research, 2012, 364, 28-40.	2.3	22
39	Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cellular and Molecular Life Sciences, 2012, 69, 4079-4092.	5.4	68
40	Synthesis of heterocyclic N-(\hat{l}^2 -d-glucopyranosyl)carboxamides for inhibition of glycogen phosphorylase. Carbohydrate Research, 2012, 351, 56-63.	2.3	25
41	N-(4-Substituted-benzoyl)-N′-(β-d-glucopyranosyl)ureas as inhibitors of glycogen phosphorylase: Synthesis and evaluation by kinetic, crystallographic, and molecular modelling methods. Bioorganic and Medicinal Chemistry, 2012, 20, 1801-1816.	3.0	13
42	Synthesis of N-aryl spiro-sulfamides as potential glycogen phosphorylase inhibitors. Tetrahedron Letters, 2012, 53, 959-961.	1.4	25
43	Effect of glucopyranosylidene-spiro-thiohydantoin on glycogen metabolism in liver tissues of streptozotocin-induced and obese diabetic rats. Molecular Medicine Reports, 2011, 4, 477-81.	2.4	40
44	PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure. Cell Metabolism, 2011, 13, 450-460.	16.2	231
45	PKCdelta is a positive regulator of chondrogenesis in chicken high density micromass cell cultures. Biochimie, 2011, 93, 149-159.	2.6	16
46	Characterization of the effect of TIMAP phosphorylation on its interaction with protein phosphatase 1. Biochimie, 2011, 93, 1139-1145.	2.6	15
47	Synthesis of variously coupled conjugates of d-glucose, 1,3,4-oxadiazole, and 1,2,3-triazole for inhibition of glycogen phosphorylase. Carbohydrate Research, 2011, 346, 1427-1438.	2.3	49
48	Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction. Cardiovascular Research, 2011, 92, 430-438.	3.8	53
49	Synthesis of 1-(d-glucopyranosyl)-1,2,3-triazoles and their evaluation as glycogen phosphorylase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 1171-1180.	3.0	69
50	Tethered derivatives of d-glucose and pentacyclic triterpenes for homo/heterobivalent inhibition of glycogen phosphorylase. New Journal of Chemistry, 2010, 34, 1450.	2.8	19
51	Dual role of poly(ADPâ€ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB Journal, 2009, 23, 3553-3563.	0.5	92
52	lonotropic purinergic receptor P2X4 is involved in the regulation of chondrogenesis in chicken micromass cell cultures. Cell Calcium, 2009, 45, 421-430.	2.4	32
53	Role of calcineurin in thrombinâ€mediated endothelial cell contraction. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 405-411.	1.5	5
54	Synthesis and glycogen phosphorylase inhibitory activity of N-(β-d-glucopyranosyl)amides possessing 1,4-benzodioxane moiety. Bioorganic and Medicinal Chemistry, 2009, 17, 6738-6741.	3.0	5

#	Article	IF	CITATIONS
55	Synthesis and structure–activity relationships of C-glycosylated oxadiazoles as inhibitors of glycogen phosphorylase. Bioorganic and Medicinal Chemistry, 2009, 17, 4773-4785.	3.0	60
56	Glucose-based spiro-heterocycles as potent inhibitors of glycogen phosphorylase. Bioorganic and Medicinal Chemistry, 2009, 17, 5696-5707.	3.0	34
57	Probing multivalency for the inhibition of an enzyme: glycogen phosphorylase as a case study. New Journal of Chemistry, 2009, 33, 148-156.	2.8	29
58	Inhibition of calcineurin by cyclosporine A exerts multiple effects on human melanoma cell lines HT168 and WM35. International Journal of Oncology, 2009, 34, 995-1003.	3.3	5
59	Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. , 2009, 23, 3553.		1
60	Synthesis of a C-glucosylated cyclopropylamide and evaluation as a glycogen phosphorylase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4774-4778.	2.2	14
61	Cytosolic free Ca2+ concentration exhibits a characteristic temporal pattern during in vitro cartilage differentiation: A possible regulatory role of calcineurin in Ca-signalling of chondrogenic cells. Cell Calcium, 2008, 44, 310-323.	2.4	54
62	Myosin phosphatase interacts with and dephosphorylates the retinoblastoma protein in THP-1 leukemic cells: Its inhibition is involved in the attenuation of daunorubicin-induced cell death by calyculin-A. Cellular Signalling, 2008, 20, 2059-2070.	3.6	36
63	The role of protein kinase C isoenzymes in the regulation of calcineurin activity in human peripheral blood mononuclear cells. International Journal of Molecular Medicine, 2007, 20, 359.	4.0	1
64	Synthesis and glycogen phosphorylase inhibitor activity of 2,3-dihydrobenzo[1,4]dioxin derivatives. Bioorganic and Medicinal Chemistry, 2007, 15, 4048-4056.	3.0	12
65	Synthesis of N-(β-d-glucopyranosyl) monoamides of dicarboxylic acids as potential inhibitors of glycogen phosphorylase. Carbohydrate Research, 2006, 341, 947-956.	2.3	17
66	Crystallographic studies on two bioisosteric analogues, N-acetyl-β-d-glucopyranosylamine and N-trifluoroacetyl-β-d-glucopyranosylamine, potent inhibitors of muscle glycogen phosphorylase. Bioorganic and Medicinal Chemistry, 2006, 14, 181-189.	3.0	24
67	Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 1174-1183.	1.5	37
68	In Search of Glycogen Phosphorylase Inhibitors: 5-Substituted 3-C-Glucopyranosyl-1,2,4-oxadiazoles from β-D-Glucopyranosyl Cyanides upon Cyclization ofO-Acylamidoxime Intermediates. European Journal of Organic Chemistry, 2006, 2006, 4242-4256.	2.4	54
69	Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. Journal of Cellular Biochemistry, 2006, 98, 931-953.	2.6	74
70	Recent Developments in the Synthesis and Evaluation of Glucose Analog Inhibitors of Glycogen Phosphorylases as Potential Antidiabetic Agents. Frontiers in Drug Design and Discovery, 2005, 2, 253-272.	0.3	13
71	Okadaic acid induces phosphorylation and translocation of myosin phosphatase target subunit 1 influencing myosin phosphorylation, stress fiber assembly and cell migration in HepG2 cells. Cellular Signalling, 2005, 17, 1265-1275.	3.6	37
72	Gallotannin Inhibits the Expression of Chemokines and Inflammatory Cytokines in A549 Cells. Molecular Pharmacology, 2005, 68, 895-904.	2.3	97

#	Article	IF	CITATIONS
73	Hydrogen peroxide inhibits formation of cartilage in chicken micromass cultures and decreases the activity of calcineurin: implication of ERK1/2 and Sox9 pathways. Experimental Cell Research, 2005, 305, 190-199.	2.6	42
74	Kinetic and crystallographic studies on 2-(Â-D-glucopyranosyl)-5-methyl-1, 3, 4-oxadiazole, -benzothiazole, and -benzimidazole, inhibitors of muscle glycogen phosphorylase b. Evidence for a new binding site. Protein Science, 2005, 14, 873-888.	7.6	77
75	Cytoprotective effect of gallotannin in oxidatively stressed HaCaT keratinocytes: the role of poly(ADP-ribose) metabolism. Experimental Dermatology, 2004, 13, 170-178.	2.9	31
76	Localization of myosin phosphatase target subunit 1 in rat brain and in primary cultures of neuronal cells. Journal of Comparative Neurology, 2004, 478, 72-87.	1.6	33
77	Synthesis of N-(β-D-glucopyranosyl)- and N-(2-acetamido-2-deoxy-β-D-glucopyranosyl) amides as inhibitors of glycogen phosphorylase. Bioorganic and Medicinal Chemistry, 2004, 12, 4861-4870.	3.0	59
78	Role of Intracellular Calcium Mobilization and Cell-Density-Dependent Signaling in Oxidative-Stress-Induced Cytotoxicity in HaCaT Keratinocytes. Journal of Investigative Dermatology, 2003, 121, 88-95.	0.7	38
79	Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicology Letters, 2003, 140-141, 113-124.	0.8	379
80	Glucose Analog Inhibitors of Glycogen Phosphorylases as Potential Antidiabetic Agents: Recent Developments. Current Pharmaceutical Design, 2003, 9, 1177-1189.	1.9	182
81	Detection of Poly(ADP-ribose) Polymerase Activation in Oxidatively Stressed Cells and Tissues Using Biotinylated NAD Substrate. Journal of Histochemistry and Cytochemistry, 2002, 50, 91-98.	2.5	82
82	Integrin-linked kinase phosphorylates the myosin phosphatase target subunit at the inhibitory site in platelet cytoskeleton. Biochemical Journal, 2002, 365, 79-87.	3.7	75
83	Protein Phosphatase 2A Is Involved in the Regulation of Protein Kinase A Signaling Pathway during in Vitro Chondrogenesis. Experimental Cell Research, 2002, 275, 1-8.	2.6	43
84	Nitric oxideâ€peroxynitriteâ€poly(ADPâ€ribose) polymerase pathway in the skin. Experimental Dermatology, 2002, 11, 189-202.	2.9	74
85	Kinetic and Crystallographic Studies of Glucopyranosylidene Spirothiohydantoin Binding to Glycogen Phosphorylase b. Bioorganic and Medicinal Chemistry, 2002, 10, 261-268.	3.0	50
86	Binding of N -acetyl-N  ′-β-d -glucopyranosyl urea and N -benzoyl-N  ′-β-d -glucopyranosyl urea to glyco phosphorylase b. FEBS Journal, 2002, 269, 1684-1696.	ogen 0.2	66
87	Synthesis of and a Comparative Study on the Inhibition of Muscle and Liver Glycogen Phosphorylases by Epimeric Pairs ofd-Gluco- andd-Xylopyranosylidene-spiro-(thio)hydantoins andN-(d-Glucopyranosyl) Amides. Journal of Medicinal Chemistry, 2001, 44, 2843-2848.	6.4	145
88	Synthesis of New Cyclitol Compounds That Influence the Activity of Phosphatidylinositol 4-Kinase Isoform, PI4K230. Journal of Medicinal Chemistry, 2001, 44, 627-632.	6.4	7
89	Okadaic acid-induced inhibition of protein phosphatase 2A enhances chondrogenesis in chicken limb bud micromass cell cultures. Anatomy and Embryology, 2001, 203, 23-34.	1.5	21
90	Peroxynitrite Production, DNA Breakage, and Poly(ADP-ribose) Polymerase Activation in a Mouse Model of Oxazolone-Induced Contact Hypersensitivity. Journal of Investigative Dermatology, 2001, 117, 74-80.	0.7	58

#	Article	IF	CITATIONS
91	Functional analysis of theNeurospora crassa PZL-1 protein phosphatase by expression in budding and fission yeast. Yeast, 2001, 18, 115-124.	1.7	24
92	Partial protection by poly(ADP-ribose) polymerase inhibitors from nitroxyl-induced cytotoxity in thymocytes. Free Radical Biology and Medicine, 2001, 31, 1616-1623.	2.9	40
93	Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa. Plant Journal, 2000, 23, 85-96.	5.7	67
94	Study of the subunit interactions in myosin phosphatase by surface plasmon resonance. FEBS Journal, 2000, 267, 1687-1697.	0.2	66
95	Gram-scale synthesis of a glucopyranosylidene-spiro-thiohydantoin and its effect on hepatic glycogen metabolism studied in vitro and in vivo. Tetrahedron: Asymmetry, 2000, 11, 405-408.	1.8	35
96	Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa. Plant Molecular Biology, 2000, 43, 527-536.	3.9	20
97	Immunohistochemical localisation of two phosphatidylinositol 4-kinase isoforms, PI4K230 and PI4K92, in the central nervous system of rats. Experimental Brain Research, 2000, 134, 279-288.	1.5	28
98	Phosphorylation of MYPT1 by protein kinase C attenuates interaction with PP1 catalytic subunit and the 20 kDa light chain of myosin. FEBS Letters, 2000, 484, 113-117.	2.8	39
99	Efficient inhibition of muscle and liver glycogen phosphorylases by a new glucopyranosylidene-spiro-thiohydantoin. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1385-1390.	2.2	78
100	pzl-1 encodes a novel protein phosphatase-Z-like Ser/Thr protein phosphatase in Neurospora crassa. BBA - Proteins and Proteomics, 1998, 1388, 260-266.	2.1	10
101	The Catalytic Subunits of Ser/Thr Protein Phosphatases from Caenorhabditis elegans. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 317-324.	1.6	3
102	Protein Phosphatase 1 Catalytic Subunit Isoforms from Alfalfa: Biochemical Characterization and cDNA Cloning. Archives of Biochemistry and Biophysics, 1998, 360, 206-214.	3.0	8
103	Identification and localization of myosin phosphatase in human platelets. Biochemical Journal, 1998, 330, 225-231.	3.7	29
104	Quantitation of protein phosphatase 1 and 2A in extracts of the budding yeast and fission yeast. International Journal of Biochemistry and Cell Biology, 1995, 27, 767-773.	2.8	1
105	Isolation and characterization of the catalytic subunit of protein phosphatase 2A from Neurospora crassa. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 112, 515-522.	1.6	7
106	Dephosphorylation of tau protein from Alzheimer's disease patients. Neuroscience Letters, 1994, 165, 175-178.	2.1	13
107	Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B. FEBS Letters, 1993, 330, 85-89.	2.8	48
108	Purification and characterization of three distinct types of protein phosphatase catalytic subunits in bovine platelets. Archives of Biochemistry and Biophysics, 1992, 298, 682-687.	3.0	19

#	Article	IF	CITATIONS
109	Comparative Characterization of liver glycogen metabolism in rat and gunea-pig. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 103, 547-552.	0.2	2
110	Phosphorylase phosphatase activities of rat liver in streptozotocin-diabetes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1052, 235-241.	4.1	2
111	Interaction of the catalytic subunits of protein phosphatase-1 and 2A with inhibitor-1 and 2: A fluorescent study with sulfhydryl-specific Pyrene maleimide. Biochemical and Biophysical Research Communications, 1990, 169, 559-564.	2.1	7
112	Short-term hormonal control of protein phosphatases involved in hepatic glycogen metabolism. Advances in Enzyme Regulation, 1990, 30, 305-327.	2.6	4
113	The role of autophosphorylation of cAMP-dependent protein kinase II in the inhibition of protein phosphatase-1. International Journal of Biochemistry & Cell Biology, 1989, 21, 1137-1141.	0.5	7
114	Activation/dephosphorylation of muscle glycogen synthase phosphorylated by phosphorylase kinase. International Journal of Biochemistry & Cell Biology, 1989, 21, 631-634.	0.5	1
115	Purification and partial characterization of protein phosphatases from rat thymus. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1013, 300-305.	4.1	2
116	Regulation of the dephosphorylation of phosphorylase A by glucose, AMP and polyamines. International Journal of Biochemistry & Cell Biology, 1988, 20, 197-201.	0.5	2
117	Purification of the catalytic subunit of protein phosphatase-1 from Drosophila melanogaster. Biochemical and Biophysical Research Communications, 1987, 144, 1175-1181.	2.1	12
118	Hormonal regulation of phosphorylase phosphatase activity in rat liver. FEBS Letters, 1986, 203, 253-256.	2.8	19
119	Effects of acidic and basic macromolecules on the activity of protein phosphatase-1. BBA - Proteins and Proteomics, 1985, 827, 23-29.	2.1	13
120	Separation of rabbit liver latent and spontaneously active phosphorylase phosphatases by chromatography on heparin- Sepharose. Biochemical and Biophysical Research Communications, 1985, 128, 705-712.	2.1	41
121	Heparin inhibits the activity of protein phosphatase-1. FEBS Letters, 1984, 169, 45-48.	2.8	62
122	Heterotropic interactions of AMP and glucose binding sites in phosphorylase a are destroyed by limited proteolysis. Biochemical and Biophysical Research Communications, 1983, 113, 825-831.	2.1	13
123	Structural and functional assembly of glycogen metabolizing enzymes. BioSystems, 1980, 12, 289-294.	2.0	2
124	Platelet phosphoprotein phosphatase activity. Its subcellular distribution and regulation. Biochimica Et Biophysica Acta - Biomembranes, 1980, 611, 384-389.	2.6	5
125	Regulation of phosphoprotein phosphatase by phosphorylation of other proteins in skeletal muscle. FEBS Letters, 1978, 93, 239-241.	2.8	7
126	Role of Phosphorylase Kinase and Cyclic AMP-dependent Protein Kinase in the Regulation of Phosphorylase Phosphatase. Biochemical Society Transactions, 1978, 6, 21-25.	3.4	4

#	Article	IF	CITATIONS
127	The control of phosphorylase phosphatase by cAMP-dependent protein kinase. FEBS Letters, 1977, 82, 269-272.	2.8	28
128	Thiophosphate-activated phosphorylase kinase as a probe in the regulation of phosphorylase phosphatase. Biochimica Et Biophysica Acta - Biomembranes, 1976, 429, 809-816.	2.6	29