Sai P Pydi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1038782/publications.pdf

Version: 2024-02-01

361413 477307 45 904 20 29 citations h-index g-index papers 46 46 46 951 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	\hat{l}^2 -Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annual Review of Physiology, 2022, 84, 17-40.	13.1	14
2	2â€Step PLT16â€AST44 method: Simplified liver fibrosis detection system in patients with nonâ€alcoholic fatty liver disease. Hepatology Research, 2022, 52, 352-363.	3.4	8
3	Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nature Communications, 2022, 13, 1652.	12.8	13
4	\hat{l}^2 -Arrestins as regulators of key metabolic processes. , 2022, , 69-85.		0
5	Expression and Role of \hat{I}^2 3-Adrenergic Receptor during the Differentiation of 3T3-L1 Preadipocytes into Adipocytes. Biology, 2022, 11, 772.	2.8	3
6	Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annual Review of Pharmacology and Toxicology, 2021, 61, 421-440.	9.4	26
7	Serum thrombospondin 2 is a novel predictor for the severity in the patients with NAFLD. Liver International, 2021, 41, 505-514.	3.9	25
8	Key Metabolic Functions of \hat{l}^2 -Arrestins: Studies with Novel Mouse Models. Trends in Endocrinology and Metabolism, 2021, 32, 118-129.	7.1	7
9	Chemogenetic approaches to identify metabolically important GPCR signaling pathways: Therapeutic implications. Journal of Neurochemistry, 2021, 158, 603-620.	3.9	8
10	Metabolic roles of G proteinâ€coupled receptor signaling in obesity and type 2 diabetes. FEBS Journal, 2021, 288, 2622-2644.	4.7	25
11	Adipocyte P2Y14 receptors play a key role in regulating whole-body glucose and lipid homeostasis. JCI Insight, 2021, 6, .	5.0	15
12	32-OR: Receptor-Mediated Gq Signaling in Adipocytes as a Critical Modulator of Systemic Glucose and Lipid Homeostasis. Diabetes, 2021, 70, 32-OR.	0.6	0
13	\hat{l}^2 -Arrestin-1 is required for adaptive \hat{l}^2 -cell mass expansion during obesity. Nature Communications, 2021, 12, 3385.	12.8	13
14	Metabolic Functions of G Protein-Coupled Receptors in Hepatocytes—Potential Applications for Diabetes and NAFLD. Biomolecules, 2020, 10, 1445.	4.0	23
15	Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nature Communications, 2020, 11, 2995.	12.8	27
16	Beneficial metabolic role of \hat{I}^2 -arrestin-1 expressed by AgRP neurons. Science Advances, 2020, 6, eaaz1341.	10.3	17
17	\hat{l}^2 -arrestin-1 suppresses myogenic reprogramming of brown fat to maintain euglycemia. Science Advances, 2020, 6, eaba1733.	10.3	15
18	Lack of adipocyte purinergic P2Y ₆ receptor greatly improves whole body glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30763-30774.	7.1	34

#	Article	IF	Citations
19	1971-P: Activation of Adipocyte Gq Signaling Causes Improved Whole-Body Glucose Homeostasis. Diabetes, 2020, 69, 1971-P.	0.6	0
20	2129-P: Glucagon Secretion from Pancreatic Islets Is Regulated by Beta-Arrestin-1. Diabetes, 2020, 69, .	0.6	0
21	1694-P: Beta-Arrestin 1 Suppresses Myogenic Reprogramming of Brown Fat to Maintain Euglycemia. Diabetes, 2020, 69, 1694-P.	0.6	0
22	Adipocyte \hat{l}^2 -arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nature Communications, 2019, 10, 2936.	12.8	43
23	Selective activation of Gs signaling in adipocytes causes striking metabolic improvements in mice. Molecular Metabolism, 2019, 27, 83-91.	6.5	25
24	1797-P: ß-arrestin-1 in AgRP Neurons Plays Crucial Role in Maintaining Whole Body Glucose Homeostasis. Diabetes, 2019, 68, 1797-P.	0.6	0
25	38-OR: Beta-Arrestin-1 Regulates Pancreatic Beta-Cell Function and Plays a Key Role in Maintaining Whole Body Glucose Homeostasis. Diabetes, 2019, 68, 38-OR.	0.6	0
26	1781-P: Adipocyte GI Signaling Regulates Whole-Body Glucose Homeostasis and Insulin Sensitivity. Diabetes, 2019, 68, 1781-P.	0.6	0
27	Hepatic Gi signaling regulates whole-body glucose homeostasis. Journal of Clinical Investigation, 2018, 128, 746-759.	8.2	34
28	Adipocyte-Selective Deletion of ß-Arrestin-1 in Mice Causes Adiposity, Impaired Glucose Tolerance, and Reduced Insulin Sensitivity. Diabetes, 2018, 67, .	0.6	0
29	Characterization of the Direct Interaction between Hybrid Sensor Kinases PA1611 and RetS That Controls Biofilm Formation and the Type III Secretion System inPseudomonas aeruginosa. ACS Infectious Diseases, 2017, 3, 162-175.	3.8	35
30	Cholesterol modulates bitter taste receptor function. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2081-2087.	2.6	22
31	Abscisic Acid Acts as a Blocker of the Bitter Taste G Protein-Coupled Receptor T2R4. Biochemistry, 2015, 54, 2622-2631.	2.5	49
32	Dextromethorphan Mediated Bitter Taste Receptor Activation in the Pulmonary Circuit Causes Vasoconstriction. PLoS ONE, 2014, 9, e110373.	2.5	33
33	Amino Acid Derivatives as Bitter Taste Receptor (T2R) Blockers. Journal of Biological Chemistry, 2014, 289, 25054-25066.	3.4	78
34	Identification of a high affinity selective inhibitor of Polo-like kinase 1 for cancer chemotherapy by computational approach. Journal of Molecular Graphics and Modelling, 2014, 51, 104-112.	2.4	4
35	Constitutive Activity of Bitter Taste Receptors (T2Rs). Advances in Pharmacology, 2014, 70, 303-326.	2.0	22
36	The third intracellular loop plays a critical role in bitter taste receptor activation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 231-236.	2.6	34

#	Article	IF	CITATION
37	Role of rhodopsin N-terminus in structure and function of rhodopsin-bitter taste receptor chimeras. Biochemical and Biophysical Research Communications, 2013, 430, 179-182.	2.1	9
38	New Insights into Structural Determinants for Prostanoid Thromboxane A2 Receptor- and Prostacyclin Receptor-G Protein Coupling. Molecular and Cellular Biology, 2013, 33, 184-193.	2.3	23
39	STRUCTURE ―FUNCTION ANALYSIS OF THE LIGAND BINDING POCKET OF BITTER TASTE RECEPTOR T2R4. FASEB Journal, 2013, 27, 883.6.	0.5	O
40	Recent Advances in Structure and Function Studies on Human Bitter Taste Receptors. Current Protein and Peptide Science, 2012, 13, 501-508.	1.4	26
41	Constitutively active mutant gives novel insights into the mechanism of bitter taste receptor activation. Journal of Neurochemistry, 2012, 122, 537-544.	3.9	36
42	Site-Directed Mutations and the Polymorphic Variant Ala160Thr in the Human Thromboxane Receptor Uncover a Structural Role for Transmembrane Helix 4. PLoS ONE, 2012, 7, e29996.	2.5	16
43	Structural Basis of Activation of Bitter Taste Receptor T2R1 and Comparison with Class A G-protein-coupled Receptors (GPCRs). Journal of Biological Chemistry, 2011, 286, 36032-36041.	3.4	74
44	Serine Phosphorylation: An Important Post-translational Modification For Functional Regulation Of Smooth Muscle Thromboxane Receptor. , 2010, , .		0
45	Bitter taste receptor T2R1 is activated by dipeptides and tripeptides. Biochemical and Biophysical Research Communications, 2010, 398, 331-335.	2.1	67