## Malgorzata Kot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1038688/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Roomâ€Temperature Atomic Layer Deposition of Al <sub>2</sub> O <sub>3</sub> : Impact on Efficiency,<br>Stability and Surface Properties in Perovskite Solar Cells. ChemSusChem, 2016, 9, 3401-3406.                           | 6.8 | 76        |
| 2  | Understanding the growth mechanism of graphene on Ge/Si(001) surfaces. Scientific Reports, 2016, 6, 31639.                                                                                                                    | 3.3 | 44        |
| 3  | Roomâ€Temperature Atomic‣ayerâ€Deposited Al <sub>2</sub> O <sub>3</sub> Improves the Efficiency of<br>Perovskite Solar Cells over Time. ChemSusChem, 2018, 11, 3640-3648.                                                     | 6.8 | 33        |
| 4  | Tailoring optical and electrical properties of thin-film coatings based on mixed Hf and Ti oxides for optoelectronic application. Materials and Design, 2019, 175, 107822.                                                    | 7.0 | 25        |
| 5  | Localized defect states and charge trapping in atomic layer deposited-Al2O3 films. Journal of Vacuum<br>Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .                                                     | 2.1 | 24        |
| 6  | Evidence of Nitrogen Contribution to the Electronic Structure of the<br>CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Perovskite. Chemistry - A European Journal, 2018, 24,<br>3539-3544.                                  | 3.3 | 20        |
| 7  | Atomic Layer-Deposited Aluminum Oxide Hinders lodide Migration and Stabilizes Perovskite Solar<br>Cells. Cell Reports Physical Science, 2020, 1, 100112.                                                                      | 5.6 | 20        |
| 8  | Analysis of nitrogen species in titanium oxynitride ALD films. Applied Surface Science, 2016, 381, 42-47.                                                                                                                     | 6.1 | 19        |
| 9  | Analysis of titanium species in titanium oxynitride films prepared by plasma enhanced atomic layer deposition. Surface and Coatings Technology, 2017, 324, 586-593.                                                           | 4.8 | 17        |
| 10 | Engineering of Subâ€Nanometer SiO <sub><i>x</i></sub> Thickness in Si Photocathodes for Optimized<br>Open Circuit Potential. ChemSusChem, 2016, 9, 2332-2336.                                                                 | 6.8 | 16        |
| 11 | In situ Nearâ€Ambient Pressure Xâ€ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux<br>and Water on the Stability of Halide Perovskite. ChemSusChem, 2020, 13, 5722-5730.                                   | 6.8 | 15        |
| 12 | In-gap states in titanium dioxide and oxynitride atomic layer deposited films. Journal of Vacuum<br>Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .                                                         | 2.1 | 14        |
| 13 | Room temperature atomic layer deposited Al2O3 on CH3NH3PbI3 characterized by synchrotron-based<br>X-ray photoelectron spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2017, 411,<br>49-52.                 | 1.4 | 13        |
| 14 | Thermal stability of CH3NH3PbIxCl3-x versus [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films by X-ray photoelectron spectroscopy. Applied Surface Science, 2020, 513, 145596.                                                 | 6.1 | 13        |
| 15 | Long-term ambient surface oxidation of titanium oxynitride films prepared by plasma-enhanced atomic<br>layer deposition: An XPS study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and<br>Films, 2018, 36, . | 2.1 | 9         |
| 16 | Al 2 O 3 â€Atomic Layer Deposited Films on CH 3 NH 3 PbI 3 : Intrinsic Defects and Passivation Mechanisms.<br>Energy Technology, 2019, 7, 1900975.                                                                            | 3.8 | 8         |
| 17 | Comparison of plasma-enhanced atomic layer deposition AlN films prepared with different plasma sources. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .                                   | 2.1 | 8         |
|    |                                                                                                                                                                                                                               |     |           |

An (In Situ)2 Approach: ALD and resPES Applied to Al2O3, HfO2, and TiO2 Ultrathin Films. , 2018, , 18-26.

7

Malgorzata Kot

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Point Defect-Mediated Interface Formation and Appearance of a Cooper Minimum for<br>AlO <i><sub>x</sub></i> Atomic-Layer-Deposited Films on<br>CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub> . Journal of Physical Chemistry C, 2019, 123,<br>23352-23360. | 3.1 | 7         |
| 20 | Topâ€Down Approach to Study Chemical and Electronic Properties of Perovskite Solar Cells: Sputtered<br>Depth Profiling Versus Tapered Cross‧ectional Photoelectron Spectroscopies. Solar Rrl, 2021, 5,<br>2100298.                                            | 5.8 | 6         |
| 21 | Band Bending at Hole Transporting Layerâ€Perovskite Interfaces in nâ€iâ€p and in pâ€iâ€n Architecture. Solar Rrl, 2022, 6, .                                                                                                                                  | 5.8 | 6         |
| 22 | Selective Deposition of an Ultrathin Pt Layer on a Au-Nanoisland-Modified Si Photocathode for<br>Hydrogen Generation. ACS Omega, 2017, 2, 1360-1366.                                                                                                          | 3.5 | 5         |
| 23 | Interface Potentials, Intrinsic Defects, and Passivation Mechanisms in Al2O3, HfO2, and TiO2 Ultrathin Films. , 2018, , 162-171.                                                                                                                              |     | 4         |
| 24 | Toward controlling the Al <sub>2</sub> O <sub>3</sub> /ZnO interface properties by <i>in situ</i> ALD preparation. Dalton Transactions, 2022, 51, 9291-9301.                                                                                                  | 3.3 | 4         |
| 25 | Analysis of surface properties of Ti-Cu-Ox gradient thin films using AFM and XPS investigations.<br>Materials Science-Poland, 2018, 36, 761-768.                                                                                                              | 1.0 | 3         |
| 26 | Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 062406.                                                         | 2.1 | 3         |
| 27 | Themed issue on electronic properties and characterisation of perovskites. Journal of Materials Chemistry C, 2019, 7, 5224-5225.                                                                                                                              | 5.5 | 1         |
| 28 | Self-Assembled Monolayers from Symmetrical Di-Thiols: Preparation, Characterization and Application for the Assembly of Electrochemically Active Films. Engineering Proceedings, 2021, 6, .                                                                   | 0.4 | 0         |