Guotao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1038465/publications.pdf Version: 2024-02-01

GUOTAO PENG

#	Article	IF	CITATIONS
1	Twoâ€Dimensional Transition Metal Dichalcogenides Trigger Trained Immunity in Human Macrophages through Epigenetic and Metabolic Pathways. Small, 2022, 18, e2107816.	10.0	16
2	Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Advanced Drug Delivery Reviews, 2022, 188, 114422.	13.7	21
3	Biodegradation of graphdiyne oxide in classically activated (M1) macrophages modulates cytokine production. Nanoscale, 2021, 13, 13072-13084.	5.6	12
4	Mitigation of Amyloidosis with Nanomaterials. Advanced Materials, 2020, 32, e1901690.	21.0	87
5	Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract. Nanoscale, 2020, 12, 16730-16737.	5.6	26
6	Amyloidosis: Mitigation of Amyloidosis with Nanomaterials (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070146.	21.0	2
7	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	4.2	29
8	Redox Activity and Nano–Bio Interactions Determine the Skin Injury Potential of Co ₃ O ₄ -Based Metal Oxide Nanoparticles toward Zebrafish. ACS Nano, 2020, 14, 4166-4177.	14.6	17
9	Environmental Hazard Potential of Nanoâ€Photocatalysts Determined by Nanoâ€Bio Interactions and Exposure Conditions. Small, 2020, 16, e1907690.	10.0	20
10	Nanoâ€Photocatalysts: Environmental Hazard Potential of Nanoâ€Photocatalysts Determined by Nanoâ€Bio Interactions and Exposure Conditions (Small 21/2020). Small, 2020, 16, 2070118.	10.0	0
11	Nanosilver at the interface of biomedical applications, toxicology, and synthetic strategies. , 2020, , 119-139.		9
12	Reduced graphene oxide composites and its real-life application potential for in-situ crude oil removal. Chemosphere, 2020, 249, 126141.	8.2	24
13	Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10, 5435-5488.	10.0	80
14	Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nature Communications, 2019, 10, 3780.	12.8	132
15	Seasonally Relevant Cool Temperatures Interact with N Chemistry to Increase Microcystins Produced in Lab Cultures of <i>Microcystis aeruginosa</i> NIES-843. Environmental Science & Technology, 2018, 52, 4127-4136.	10.0	55
16	Differential effects of metal oxide nanoparticles on zebrafish embryos and developing larvae. Environmental Science: Nano, 2018, 5, 1200-1207.	4.3	20
17	Graphene quantum dots against human IAPP aggregation and toxicity <i>in vivo</i> . Nanoscale, 2018, 10, 19995-20006.	5.6	100
18	Nano–Stem Cell Interactions: Applications Versus Implications. Nano LIFE, 2018, 08, 1841001.	0.9	1

Guotao Peng

#	Article	IF	CITATIONS
19	Mitigating Human IAPP Amyloidogenesis In Vivo with Chiral Silica Nanoribbons. Small, 2018, 14, e1802825.	10.0	57
20	Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation Efficiency vs. Embryonic Toxicity of the Resulting Compounds. Frontiers in Chemistry, 2018, 6, 192.	3.6	54
21	Response of Microcystis aeruginosa FACHB-905 to different nutrient ratios and changes in phosphorus chemistry. Journal of Oceanology and Limnology, 2018, 36, 1040-1052.	1.3	9
22	In Vivo Mitigation of Amyloidogenesis through Functional–Pathogenic Double-Protein Coronae. Nano Letters, 2018, 18, 5797-5804.	9.1	39
23	Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905. Toxins, 2017, 9, 168.	3.4	18
24	Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation. Water Science and Technology, 2015, 72, 1824-1831.	2.5	9
25	Ecological restoration for river ecosystems: comparing the huangpu river in shanghai and the hudson river in new york. Ecosystem Health and Sustainability, 2015, 1, 1-14.	3.1	5
26	A Novel Photocatalytic Material for Removing Microcystin-LR under Visible Light Irradiation: Degradation Characteristics and Mechanisms. PLoS ONE, 2014, 9, e95798.	2.5	12
27	Photosynthetic response to nitrogen source and different ratios of nitrogen and phosphorus in toxic cyanobacteria, Microcystis aeruginosa FACHB-905. Journal of Limnology, 0, , .	1.1	6