
Somchai Wongwises

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10382174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 2013, 57, 582-594.	2.5	1,081
2	Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Science, 2009, 33, 706-714.	1.5	700
3	Critical review of heat transfer characteristics of nanofluids. Renewable and Sustainable Energy Reviews, 2007, 11, 512-523.	8.2	672
4	Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics Reports, 2019, 790, 1-48.	10.3	670
5	A critical review of convective heat transfer of nanofluids. Renewable and Sustainable Energy Reviews, 2007, 11, 797-817.	8.2	622
6	An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. International Journal of Heat and Mass Transfer, 2010, 53, 334-344.	2.5	582
7	Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 2009, 52, 2059-2067.	2.5	440
8	A review of entropy generation in nanofluid flow. International Journal of Heat and Mass Transfer, 2013, 65, 514-532.	2.5	434
9	Recent advances in modeling and simulation of nanofluid flows—Part II: Applications. Physics Reports, 2019, 791, 1-59.	10.3	389
10	A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, 2006, 10, 463-490.	8.2	385
11	Nanofluid flow and heat transfer in porous media: A review of the latest developments. International Journal of Heat and Mass Transfer, 2017, 107, 778-791.	2.5	377
12	A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable and Sustainable Energy Reviews, 2003, 7, 131-154.	8.2	371
13	Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. International Communications in Heat and Mass Transfer, 2015, 66, 100-104.	2.9	336
14	Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy, 2017, 36, 134-155.	8.2	326
15	An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management, 2019, 198, 111886.	4.4	293
16	Viscosity of nanofluids: A review of recent experimental studies. International Communications in Heat and Mass Transfer, 2016, 73, 114-123.	2.9	274
17	An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1817-1824.	2.0	265
18	Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. International Journal of Heat and Mass Transfer, 2018, 117, 474-486.	2.5	263

#	Article	IF	CITATIONS
19	Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. International Journal of Heat and Mass Transfer, 2009, 52, 1582-1588.	2.5	233
20	Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid. International Communications in Heat and Mass Transfer, 2008, 35, 1320-1326.	2.9	211
21	Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. Journal of Thermal Analysis and Calorimetry, 2014, 118, 287-294.	2.0	210
22	Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer, 2016, 92, 1041-1052.	2.5	210
23	Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. International Communications in Heat and Mass Transfer, 2014, 58, 176-183.	2.9	206
24	Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. International Journal of Heat and Mass Transfer, 2016, 103, 1084-1097.	2.5	202
25	Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry, 2019, 58, 104701.	3.8	188
26	Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Applied Energy, 2013, 111, 40-45.	5.1	186
27	Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models. International Journal of Heat and Mass Transfer, 2014, 78, 64-75.	2.5	183
28	Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. International Communications in Heat and Mass Transfer, 2016, 76, 16-23.	2.9	179
29	Performance analysis of a minichannel-based solar collector using different nanofluids. Energy Conversion and Management, 2014, 88, 129-138.	4.4	164
30	Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. International Communications in Heat and Mass Transfer, 2015, 65, 71-75.	2.9	163
31	Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. International Communications in Heat and Mass Transfer, 2016, 76, 209-214.	2.9	163
32	Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state-of-the-art review. Powder Technology, 2019, 352, 209-226.	2.1	163
33	Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. International Journal of Heat and Mass Transfer, 2014, 73, 186-194.	2.5	162
34	Thermal conductivity of Al2O3/water nanofluids. Journal of Thermal Analysis and Calorimetry, 2014, 117, 675-681.	2.0	159
35	Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. International Communications in Heat and Mass Transfer, 2016, 74, 108-113.	2.9	149
36	Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake. Nano Energy, 2021, 86, 106069.	8.2	149

#	Article	IF	CITATIONS
37	Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. International Communications in Heat and Mass Transfer, 2015, 68, 69-77.	2.9	145
38	Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1399-1409.	2.0	145
39	Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. International Journal of Heat and Mass Transfer, 2011, 54, 4376-4388.	2.5	140
40	A comprehensive review on rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations. International Journal of Heat and Mass Transfer, 2018, 127, 997-1012.	2.5	140
41	Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator. Renewable Energy, 2006, 31, 345-359.	4.3	133
42	Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Experimental Thermal and Fluid Science, 2016, 74, 81-90.	1.5	132
43	Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator. Energy Conversion and Management, 2005, 46, 85-100.	4.4	128
44	Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy, 2017, 137, 160-171.	4.5	128
45	Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochimica Acta, 2012, 545, 48-56.	1.2	126
46	Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods. International Communications in Heat and Mass Transfer, 2015, 63, 35-40.	2.9	126
47	First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: Effects of nanoparticle shape and tube materials. International Journal of Heat and Mass Transfer, 2014, 78, 1166-1176.	2.5	123
48	Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH) 2 –EG using experimental data. International Communications in Heat and Mass Transfer, 2015, 67, 46-50.	2.9	120
49	An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT-engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid. Applied Thermal Engineering, 2018, 129, 577-586.	3.0	120
50	The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube. International Journal of Heat and Mass Transfer, 2010, 53, 2924-2931.	2.5	119
51	A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. Journal of Magnetism and Magnetic Materials, 2017, 430, 22-28.	1.0	119
52	A review of nanorefrigerants: Flow characteristics and applications. International Journal of Refrigeration, 2014, 44, 125-140.	1.8	117
53	Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers. Energy Conversion and Management, 2005, 46, 2216-2231.	4.4	113
54	Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Experimental Thermal and Fluid Science, 2010, 34, 992-999.	1.5	113

#	Article	IF	CITATIONS
55	Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid. International Communications in Heat and Mass Transfer, 2015, 65, 47-51.	2.9	111
56	A review of recent advances in solar cooking technology. Renewable Energy, 2019, 140, 419-435.	4.3	110
57	Conceptual analysis framework development to understand barriers of nanofluid commercialization. Nano Energy, 2022, 92, 106736.	8.2	106
58	Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. Journal of Molecular Liquids, 2017, 230, 121-128.	2.3	105
59	AN EXPERIMENTAL STUDY ON THE IN-TUBE CONVECTIVE HEAT TRANSFER COEFFICIENTS IN A SPIRAL COIL HEAT EXCHANGER. International Communications in Heat and Mass Transfer, 2002, 29, 797-809.	2.9	103
60	Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study. International Journal of Heat and Mass Transfer, 2016, 99, 792-804.	2.5	103
61	Evaporation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger. International Journal of Heat and Mass Transfer, 2006, 49, 658-670.	2.5	101
62	Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: Effects of particle size, temperature, and concentration. International Communications in Heat and Mass Transfer, 2014, 58, 138-146.	2.9	100
63	Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration, 2004, 27, 587-594.	1.8	98
64	Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance. Experimental Thermal and Fluid Science, 2010, 34, 616-624.	1.5	97
65	Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. International Journal of Heat and Mass Transfer, 2013, 60, 201-209.	2.5	94
66	Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties. International Journal of Heat and Mass Transfer, 2015, 85, 656-666.	2.5	94
67	Effect of induced electric field on magneto-natural convection in a vertical cylindrical annulus filled with liquid potassium. International Journal of Heat and Mass Transfer, 2015, 90, 418-426.	2.5	94
68	Condensation heat transfer and pressure drop of HFC-134a in a helically coiled concentric tube-in-tube heat exchanger. International Journal of Heat and Mass Transfer, 2006, 49, 4386-4398.	2.5	92
69	Flow pattern, void fraction and pressure drop of two-phase air–water flow in a horizontal circular micro-channel. Experimental Thermal and Fluid Science, 2008, 32, 748-760.	1.5	92
70	Review on the recent progress in the preparation and stability of graphene-based nanofluids. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1145-1172.	2.0	92
71	Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature. International Communications in Heat and Mass Transfer, 2013, 44, 87-92.	2.9	89
72	Applications of eco-friendly refrigerants and nanorefrigerants: A review. Renewable and Sustainable Energy Reviews, 2018, 96, 91-99.	8.2	89

#	Article	IF	CITATIONS
73	Thermal performance of miniature loop heat pipe with graphene–water nanofluid. International Journal of Heat and Mass Transfer, 2016, 93, 957-968.	2.5	88
74	Multi-objective optimization of natural convection in a cylindrical annulus mold under magnetic field using particle swarm algorithm. International Communications in Heat and Mass Transfer, 2015, 60, 13-20.	2.9	87
75	The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: Two-phase mixture model. International Journal of Mechanical Sciences, 2019, 156, 397-409.	3.6	87
76	Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. International Communications in Heat and Mass Transfer, 2016, 70, 66-74.	2.9	86
77	Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. International Communications in Heat and Mass Transfer, 2018, 99, 18-25.	2.9	85
78	A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems. Applied Thermal Engineering, 2017, 110, 1091-1100.	3.0	83
79	Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device. Applied Thermal Engineering, 2008, 28, 467-477.	3.0	82
80	Second law analysis of a nanofluid-based solar collector using experimental data. Journal of Thermal Analysis and Calorimetry, 2016, 126, 617-625.	2.0	82
81	Convective heat transfer of nanofluids with correlations. Particuology, 2011, 9, 626-631.	2.0	81
82	Irreversibility analysis of a vertical annulus using TiO2/water nanofluid with MHD flow effects. International Journal of Heat and Mass Transfer, 2013, 64, 671-679.	2.5	81
83	Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data. International Communications in Heat and Mass Transfer, 2017, 86, 25-31.	2.9	80
84	A comparative experimental study on the natural convection heat transfer of different metal oxide nanopowders suspended in turbine oil inside an inclined cavity. International Journal of Heat and Mass Transfer, 2014, 73, 231-238.	2.5	79
85	Simultaneous heat and mass transfer characteristics for wavy fin-and-tube heat exchangers under dehumidifying conditions. International Journal of Heat and Mass Transfer, 2006, 49, 132-143.	2.5	77
86	Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical models. International Communications in Heat and Mass Transfer, 2013, 47, 98-104.	2.9	76
87	Measurement and Correlation of the Viscosity of Water-Based Al ₂ O ₃ and TiO ₂ Nanofluids in High Temperatures and Comparisons with Literature Reports. Journal of Dispersion Science and Technology, 2013, 34, 1697-1703.	1.3	75
88	Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU. International Communications in Heat and Mass Transfer, 2009, 36, 834-840.	2.9	74
89	Dispersion of ZnO Nanoparticles in a Mixture of Ethylene Glycol–Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis. Journal of Cluster Science, 2013, 24, 1103-1114.	1.7	74
90	Flow pattern, pressure drop and void fraction of two-phase gas–liquid flow in an inclined narrow annular channel. Experimental Thermal and Fluid Science, 2006, 30, 345-354.	1.5	73

#	Article	IF	CITATIONS
91	Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system. Energy Conversion and Management, 2006, 47, 1644-1659.	4.4	73
92	Performance of low-temperature differential Stirling engines. Renewable Energy, 2007, 32, 547-566.	4.3	72
93	Experimental study on two-phase condensation heat transfer and pressure drop of R-134a flowing in a dimpled tube. International Journal of Heat and Mass Transfer, 2017, 106, 437-448.	2.5	72
94	An exergy analysis on the performance of a counterflow wet cooling tower. Applied Thermal Engineering, 2007, 27, 910-917.	3.0	71
95	Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. International Communications in Heat and Mass Transfer, 2014, 57, 208-215.	2.9	71
96	Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Scientific Reports, 2017, 7, 17369.	1.6	70
97	Design of a heat exchanger working with organic nanofluids using multi-objective particle swarm optimization algorithm and response surface method. International Journal of Heat and Mass Transfer, 2018, 119, 922-930.	2.5	70
98	EXPERIMENTAL STUDY ON DRYING OF CHILLI IN A COMBINED MICROWAVE-VACUUM-ROTARY DRUM DRYER. Drying Technology, 2002, 20, 2067-2079.	1.7	69
99	The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air–water flow in circular micro-channels. Experimental Thermal and Fluid Science, 2010, 34, 454-462.	1.5	68
100	Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. International Communications in Heat and Mass Transfer, 2018, 97, 30-38.	2.9	68
101	Investigation on power output of the gamma-configuration low temperature differential Stirling engines. Renewable Energy, 2005, 30, 465-476.	4.3	67
102	A review of heating/cooling processes using nanomaterials suspended in refrigerants and lubricants. International Journal of Heat and Mass Transfer, 2020, 153, 119611.	2.5	67
103	Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. International Journal of Refrigeration, 2007, 30, 601-608.	1.8	66
104	Natural convection of Al2O3/water nanofluid in a square cavity: Effects of heterogeneous heating. International Journal of Heat and Mass Transfer, 2014, 74, 391-402.	2.5	66
105	Heat Transfer, Pressure Drop, and Entropy Generation in a Solar Collector Using SiO2/Water Nanofluids: Effects of Nanoparticle Size and pH. Journal of Heat Transfer, 2015, 137, .	1.2	66
106	Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method. International Journal of Heat and Mass Transfer, 2019, 134, 1218-1226.	2.5	66
107	Flow pattern and heat transfer characteristics of R-134a refrigerant during flow boiling in a horizontal circular mini-channel. International Journal of Heat and Mass Transfer, 2010, 53, 4023-4038.	2.5	65
108	An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures. Experimental Thermal and Fluid Science, 2017, 87, 30-39.	1.5	65

Somehai Wongwises

#	Article	IF	CITATIONS
109	Condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes. International Journal of Heat and Mass Transfer, 2011, 54, 2673-2682.	2.5	63
110	Effect of replacing nanofluid instead of water on heat transfer in a channel with extended surfaces under a magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1249-1271.	1.6	63
111	Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review. Journal of Molecular Liquids, 2021, 321, 114430.	2.3	63
112	Performance of the two-phase ejector expansion refrigeration cycle. International Journal of Heat and Mass Transfer, 2005, 48, 4282-4286.	2.5	62
113	Effect of number of tube rows on the air-side performance of crimped spiral fin-and-tube heat exchanger with a multipass parallel and counter cross-flow configuration. International Journal of Heat and Mass Transfer, 2012, 55, 1403-1411.	2.5	62
114	An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts. International Communications in Heat and Mass Transfer, 2019, 107, 1-13.	2.9	61
115	Unconfined laminar nanofluid flow and heat transfer around a square cylinder. International Journal of Heat and Mass Transfer, 2012, 55, 1475-1485.	2.5	60
116	Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1031-1045.	2.0	60
117	A study of the heat transfer characteristics of a compact spiral coil heat exchanger under wet-surface conditions. Experimental Thermal and Fluid Science, 2005, 29, 511-521.	1.5	59
118	Flow Patterns and Energy Dissipation over Various Stepped Chutes. Journal of Irrigation and Drainage Engineering - ASCE, 2006, 132, 70-76.	0.6	59
119	Performance of a twin power piston low temperature differential Stirling engine powered by a solar simulator. Solar Energy, 2007, 81, 884-895.	2.9	59
120	Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field. Journal of Magnetism and Magnetic Materials, 2017, 428, 457-463.	1.0	59
121	Condensation heat transfer and pressure drop characteristics of R-134a flowing through dimpled tubes with different helical and dimpled pitches. International Journal of Heat and Mass Transfer, 2018, 121, 620-631.	2.5	57
122	Latest developments in boiling critical heat flux using nanofluids: A concise review. International Communications in Heat and Mass Transfer, 2018, 98, 59-66.	2.9	57
123	Two-phase flow pattern maps for vertical upward gas–liquid flow in mini-gap channels. International Journal of Multiphase Flow, 2004, 30, 225-236.	1.6	54
124	Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions. International Journal of Heat and Mass Transfer, 2007, 50, 552-565.	2.5	52
125	A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source. Solar Energy, 2008, 82, 493-500.	2.9	52
126	Effect of filling ratio on the performance of a novel miniature loop heat pipe having different diameter transport lines. Applied Thermal Engineering, 2016, 106, 588-600.	3.0	52

#	Article	IF	CITATIONS
127	Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al ₂ O ₃ nanofluids. Environmental Progress and Sustainable Energy, 2018, 37, 1149-1159.	1.3	52
128	Flow characteristics of pure refrigerants and refrigerant mixtures in adiabatic capillary tubes. Applied Thermal Engineering, 2001, 21, 845-861.	3.0	51
129	A comparison of the heat transfer performance and pressure drop of nanofluid-cooled heat sinks with different miniature pin fin configurations. Experimental Thermal and Fluid Science, 2015, 69, 111-118.	1.5	51
130	An experimental study on the thermal and hydraulic performances of nanofluids flow in a miniature circular pin fin heat sink. Experimental Thermal and Fluid Science, 2015, 66, 28-35.	1.5	50
131	Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube. Journal of Thermal Analysis and Calorimetry, 2019, 137, 1809-1825.	2.0	50
132	Investigation on the jet liquid impingement heat transfer for the central processing unit of personal computers. International Communications in Heat and Mass Transfer, 2010, 37, 822-826.	2.9	49
133	Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: Thermodynamics model and experimental study. International Journal of Heat and Mass Transfer, 2017, 106, 407-421.	2.5	49
134	Thermophysical properties of CNT and CNT/Al ₂ O ₃ hybrid nanofluid. Micro and Nano Letters, 2018, 13, 617-621.	0.6	49
135	Experimental investigation of condensation heat transfer and pressure drop of R-134a flowing inside dimpled tubes with different dimpled depths. International Journal of Heat and Mass Transfer, 2019, 128, 783-793.	2.5	49
136	Optimum absorber temperature of a once-reflecting full conical concentrator of a low temperature differential Stirling engine. Renewable Energy, 2005, 30, 1671-1687.	4.3	48
137	Two-phase flow patterns and heat transfer characteristics of R134a refrigerant during flow boiling in a single rectangular micro-channel. Experimental Thermal and Fluid Science, 2015, 66, 36-45.	1.5	48
138	Experimental Investigation on a Thermal Model for a Basin Solar Still with an External Reflector. Energies, 2017, 10, 18.	1.6	48
139	A comparison of flow characteristics of refrigerants flowing through adiabatic straight and helical capillary tubes. International Communications in Heat and Mass Transfer, 2011, 38, 398-404.	2.9	47
140	Effect of fin pitches on the air-side performance of L-footed spiral fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 2013, 59, 75-82.	2.5	46
141	Two-phase condensation heat transfer coefficients of HFC –134a at high mass flux in smooth and micro-fin tubes. International Communications in Heat and Mass Transfer, 2003, 30, 577-590.	2.9	45
142	Entropy Generation Between Two Rotating Cylinders with Magnetohydrodynamic Flow Using Nanofluids. Journal of Thermophysics and Heat Transfer, 2013, 27, 161-169.	0.9	45
143	The effect of multi-wall carbon nanotubes/turbine meter oil nanofluid concentration on the thermophysical properties of lubricants. Powder Technology, 2020, 367, 133-142.	2.1	45
144	Heat Transfer Performance of a Glass Thermosyphon Using Graphene–Acetone Nanofluid. Journal of Heat Transfer, 2015, 137, .	1.2	42

#	Article	IF	CITATIONS
145	Experimental investigation of evaporation heat transfer coefficient and pressure drop of R-410A in a multiport mini-channel. International Journal of Refrigeration, 2009, 32, 124-137.	1.8	41
146	Effect of fin pitches on the air-side performance of crimped spiral fin-and-tube heat exchangers with a multipass parallel and counter cross-flow configuration. International Journal of Heat and Mass Transfer, 2011, 54, 2234-2240.	2.5	40
147	The difference in flow pattern, heat transfer and pressure drop characteristics of mini-channel flow boiling in horizontal and vertical orientations. International Journal of Multiphase Flow, 2018, 101, 97-112.	1.6	40
148	Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1823-1839.	2.0	40
149	A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions. International Journal of Heat and Mass Transfer, 2009, 52, 2370-2378.	2.5	38
150	An experimental investigation of two-phase air–water flow through a horizontal circular micro-channel. Experimental Thermal and Fluid Science, 2009, 33, 306-315.	1.5	38
151	Measurement of Thermo Physical Properties of Metallic Nanofluids for High Temperature Applications. Nanoscale and Microscale Thermophysical Engineering, 2010, 14, 152-173.	1.4	38
152	Correlations for evaporation heat transfer coefficient and two-phase friction factor for R-134a flowing through horizontal corrugated tubes. International Communications in Heat and Mass Transfer, 2011, 38, 1406-1413.	2.9	35
153	A tube-by-tube reduction method for simultaneous heat and mass transfer characteristics for plain fin-and-tube heat exchangers in dehumidifying conditions. Heat and Mass Transfer, 2005, 41, 756-765.	1.2	34
154	Flow regimes and energy loss on chutes with upward inclined steps. Canadian Journal of Civil Engineering, 2004, 31, 870-879.	0.7	33
155	Two-phase flow model of refrigerants flowing through helically coiled capillary tubes. Applied Thermal Engineering, 2010, 30, 1927-1936.	3.0	33
156	On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al2O3 nanofluid in presence of a magnetic field. Journal of Thermal Analysis and Calorimetry, 2019, 138, 679-696.	2.0	33
157	Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels. Journal of Thermal Analysis and Calorimetry, 2019, 135, 671-683.	2.0	33
158	An experimental investigation of flow boiling heat transfer of R-134a in horizontal and vertical mini-channels. Experimental Thermal and Fluid Science, 2013, 46, 232-244.	1.5	32
159	Convective Heat Transfer of Al2O3-water Nanofluids in a Microchannel Heat Sink. Current Nanoscience, 2012, 8, 317-322.	0.7	31
160	An experimental study to determine the maximum efficiency index in turbulent flow of SiO2/water nanofluids. International Journal of Heat and Mass Transfer, 2017, 112, 1113-1121.	2.5	31
161	Numerical investigation of refrigerant flow through non-adiabatic capillary tubes. Applied Thermal Engineering, 2002, 22, 2015-2032.	3.0	30
162	Combined Microwave/Fluidized Bed Drying of Fresh Peppercorns. Drying Technology, 2004, 22, 779-794.	1.7	30

#	Article	IF	CITATIONS
163	Investigation of the crosswind-influenced thermal performance of a natural draft counterflow cooling tower. International Journal of Heat and Mass Transfer, 2015, 85, 1049-1057.	2.5	30
164	Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids. Journal of Magnetism and Magnetic Materials, 2019, 479, 268-281.	1.0	30
165	Experimental measurement of viscosity and electrical conductivity of water-based γ-Al2O3/MWCNT hybrid nanofluids with various particle mass ratios. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1037-1050.	2.0	30
166	Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluid. Energy, 2021, 234, 121190.	4.5	29
167	Effects of coil diameter and pitch on the flow characteristics of alternative refrigerants flowing through adiabatic helical capillary tubes. International Communications in Heat and Mass Transfer, 2010, 37, 1305-1311.	2.9	28
168	A critical review on the use of nanoparticles in liquid–liquid extraction. Chemical Engineering Science, 2018, 183, 148-176.	1.9	28
169	Effect of sonication time on the evaporation rate of seawater containing a nanocomposite. Ultrasonics Sonochemistry, 2020, 61, 104817.	3.8	28
170	Cooling of high heat flux electronic devices using ultra-thin multiport minichannel thermosyphon. Applied Thermal Engineering, 2020, 169, 114669.	3.0	28
171	Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films. Powder Technology, 2021, 377, 939-957.	2.1	28
172	Heat transfer characteristics of a new helically coiled crimped spiral finned tube heat exchanger. Heat and Mass Transfer, 2009, 45, 381-391.	1.2	27
173	Experimental Study of Jet Nanofluids Impingement System for Cooling Computer Processing Unit. Journal of Electronics Cooling and Thermal Control, 2011, 01, 38-44.	0.4	27
174	Effect of conjugate heat transfer on the thermo-electro-hydrodynamics of nanofluids: entropy optimization analysis. Journal of Thermal Analysis and Calorimetry, 2022, 147, 599-614.	2.0	27
175	TWO-PHASE FLOW PRESSURE DROP OF HFC-134a DURING CONDENSATION IN SMOOTH AND MICRO-FIN TUBES AT HIGH MASS FLUX. International Communications in Heat and Mass Transfer, 2004, 31, 991-1004.	2.9	26
176	Effect of Nanoparticle Coating on the Performance of a Miniature Loop Heat Pipe for Electronics Cooling Applications. Journal of Heat Transfer, 2018, 140, .	1.2	26
177	Modeling of Subcooled Flow Boiling with Nanoparticles under the Influence of a Magnetic Field. Symmetry, 2019, 11, 1275.	1.1	26
178	Experimental Study on the Air-Side Performance of a Multipass Parallel and Counter Cross-Flow L-Footed Spiral Fin-and-Tube Heat Exchanger. Heat Transfer Engineering, 2012, 33, 1251-1263.	1.2	24
179	A Theoretical Comparative Study on Nanorefrigerant Performance in a Single-Stage Vapor-Compression Refrigeration Cycle. Advances in Mechanical Engineering, 2015, 7, 138725.	0.8	24
180	Low-cost zinc-oxide nanoparticles for solar-powered steam production: Superficial and volumetric approaches. Journal of Cleaner Production, 2021, 280, 124261.	4.6	24

#	Article	IF	CITATIONS
181	Finite circular fin method for wavy fin-and-tube heat exchangers under fully and partially wet surface conditions. International Journal of Heat and Mass Transfer, 2008, 51, 4002-4017.	2.5	23
182	A Hybrid Finite-Element/Finite-Difference Scheme for Solving the 3-D Energy Equation in Transient Nonisothermal Fluid Flow over a Staggered Tube Bank. Numerical Heat Transfer, Part B: Fundamentals, 2015, 68, 169-183.	0.6	23
183	Hydrothermal optimization of SiO 2 /water nanofluids based on attitudes in decision making. International Communications in Heat and Mass Transfer, 2018, 90, 67-72.	2.9	23
184	Prediction of hydrothermal behavior of a non-Newtonian nanofluid in a square channel by modeling of thermophysical properties using neural network. Journal of Thermal Analysis and Calorimetry, 2019, 135, 901-910.	2.0	23
185	Adiabatic two-phase gas–liquid flow behaviors during upward flow in a vertical circular micro-channel. Experimental Thermal and Fluid Science, 2015, 69, 158-168.	1.5	22
186	An experimental study of two-phase air–water flow and heat transfer characteristics of segmented flow in a microchannel. Experimental Thermal and Fluid Science, 2015, 62, 29-39.	1.5	22
187	Correlations for sizing adiabatic capillary tubes. International Journal of Energy Research, 2003, 27, 1145-1164.	2.2	21
188	Latest developments in nanofluid flow and heat transfer between parallel surfaces: A critical review. Advances in Colloid and Interface Science, 2021, 294, 102450.	7.0	21
189	A simulation for predicting the refrigerant flow characteristics including metastable region in adiabatic capillary tubes. International Journal of Energy Research, 2003, 27, 93-109.	2.2	20
190	An inspection of viscosity model for homogeneous two-phase flow pressure drop prediction in a horizontal circular micro-channel. International Communications in Heat and Mass Transfer, 2008, 35, 833-838.	2.9	20
191	Experimental investigation on rheological, momentum and heat transfer characteristics of flowing fiber crop suspensions. International Communications in Heat and Mass Transfer, 2017, 80, 60-69.	2.9	20
192	Heat Transfer Characteristics of a Spirally Coiled, Finned-Tube Heat Exchanger under Dry-Surface Conditions. Heat Transfer Engineering, 2006, 27, 25-34.	1.2	19
193	Flow pattern, mass flow rate, pressure distribution, and temperature distribution of two-phase flow of HFC-134a inside short-tube orifices. International Journal of Refrigeration, 2009, 32, 1864-1875.	1.8	19
194	Performance of cylindrical and flattened heat pipes at various inclinations including repeatability in anti-gravity – A comparative study. Applied Thermal Engineering, 2017, 122, 685-696.	3.0	19
195	Experimental Studies on Thermophysical and Electrical Properties of Graphene–Transformer Oil Nanofluid. Fluids, 2020, 5, 172.	0.8	19
196	Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids. Journal of Thermal Analysis and Calorimetry, 2021, 143, 859-878.	2.0	19
197	Effect of h-BN coating on nucleate boiling heat transfer performance in pool boiling. Experimental Thermal and Fluid Science, 2018, 98, 12-19.	1.5	18
198	Experimental study on evaporative heat transfer and pressure drop of R-134a in a horizontal dimpled tube. International Journal of Heat and Mass Transfer, 2019, 144, 118688.	2.5	18

#	Article	IF	CITATIONS
199	Comprehensive case study on heat transfer enhancement using micro pore metal foams: From solar collectors to thermo electric generator applications. Case Studies in Thermal Engineering, 2021, 27, 101333.	2.8	18
200	A Fully Wet and Fully Dry Tiny Circular Fin Method for Heat and Mass Transfer Characteristics for Plain Fin-and-Tube Heat Exchangers Under Dehumidifying Conditions. Journal of Heat Transfer, 2007, 129, 1256-1267.	1.2	17
201	Wave dispersion of carbon nanotubes conveying fluid supported on linear viscoelastic two-parameter foundation including thermal and small-scale effects. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 109-116.	1.3	17
202	Three-dimensional modelling of natural convection and entropy generation in a vertical cylinder under heterogeneous heat flux using nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 119-142.	1.6	17
203	Heat and Mass Transfer Characteristics for Finned Tube Heat Exchangers with Humidification. Journal of Thermophysics and Heat Transfer, 2007, 21, 361-371.	0.9	16
204	Numerical investigation for the calculation of TiO2–water nanofluids' pressure drop in plain and enhanced pipes. International Communications in Heat and Mass Transfer, 2014, 53, 98-108.	2.9	16
205	An experimental investigation of the air-side performance of crimped spiral fin-and-tube heat exchangers with a small tube diameter. International Journal of Heat and Mass Transfer, 2021, 178, 121571.	2.5	16
206	Correlations for wet surface ratio of fin-and-tube heat exchangers. International Journal of Heat and Mass Transfer, 2010, 53, 568-573.	2.5	15
207	Thermal Management of Electronic Devices Using Combined Effects of Nanoparticle Coating and Graphene–Water Nanofluid in a Miniature Loop Heat Pipe. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1241-1253.	1.4	14
208	A dispersion model for predicting the heat transfer performance of TiO2–water nanofluids under a laminar flow regime. International Journal of Heat and Mass Transfer, 2012, 55, 3138-3146.	2.5	13
209	Pool-Boiling Heat Transfer Characteristics of Al2O3-Water Nanofluids on a Horizontal Cylindrical Heating Surface. Current Nanoscience, 2013, 9, 56-60.	0.7	13
210	Pool boiling heat transfer enhancement of distilled water with passive rotating blades installed above the heating surface. Experimental Thermal and Fluid Science, 2017, 87, 109-116.	1.5	13
211	Two-phase flow of R-134a refrigerant during flow boiling through a horizontal circular mini-channel. Experimental Thermal and Fluid Science, 2011, 35, 887-895.	1.5	12
212	Actual dry-bulb temperature and equivalent dry-bulb temperature methods for wavy fin-and-tube heat exchangers with dehumidification. International Journal of Heat and Mass Transfer, 2017, 106, 675-685.	2.5	12
213	Experimental Study on the Stability and Viscosity for the Blends of Functionalized MWCNTs with Refrigeration Compressor Oils. Current Nanoscience, 2018, 14, 216-226.	0.7	12
214	Single phase flow of nanofluid including graphite and water in a microchannel. Heat and Mass Transfer, 2020, 56, 1-24.	1.2	12
215	Comparative Study of Carbon Nanosphere and Carbon Nanopowder on Viscosity and Thermal Conductivity of Nanofluids. Nanomaterials, 2021, 11, 608.	1.9	12
216	Mathematical Model for Predicting the Heat Transfer Characteristics of a Helical-Coiled, Crimped, Spiral, Finned-Tube Heat Exchanger. Heat Transfer Engineering, 2015, 36, 1495-1503.	1.2	11

Somchai Wongwises

#	Article	IF	CITATIONS
217	Helical Capillary Tube Sizing Charts for All Mixture Ratios of R125, R134a and R32. International Journal of Air-Conditioning and Refrigeration, 2016, 24, 1650022.	0.8	10
218	Determination of Optimum Velocity for Various Nanofluids Flowing in a Double-Pipe Heat Exchanger. Heat Transfer Engineering, 2017, 38, 11-25.	1.2	10
219	Measurement of thermal conductivity and viscosity of ZnO–SiO2 hybrid nanofluids. Journal of Thermal Analysis and Calorimetry, 2022, 147, 8243-8259.	2.0	10
220	Experimental Study of Halloysite Nanofluids in Pool Boiling Heat Transfer. Molecules, 2022, 27, 729.	1.7	10
221	Two-phase air–water flow in micro-channels: An investigation of the viscosity models for pressure drop prediction. International Communications in Heat and Mass Transfer, 2011, 38, 212-217.	2.9	9
222	Exergy Optimization of a Double-Exposure Solar Cooker by Response Surface Method. Journal of Thermal Science and Engineering Applications, 2017, 9, .	0.8	9
223	Sizing charts of helical capillary tubes used in refrigeration and air conditioning. Science and Technology for the Built Environment, 2019, 25, 1-10.	0.8	9
224	Feasibility of using multiport minichannel as thermosyphon for cooling of miniaturized electronic devices. Heat Transfer, 2020, 49, 4834-4856.	1.7	9
225	Testing of a Low-Temperature Differential Stirling Engine by Using Actual Solar Energy. International Journal of Green Energy, 2008, 5, 491-507.	2.1	8
226	Effects of the gap size on the flow pattern maps in a mini-gap annular channel. Experimental Thermal and Fluid Science, 2014, 57, 420-424.	1.5	8
227	Effect of confluence length on the heat transport capability of ultra-thin multiport minichannel thermosyphon. Applied Thermal Engineering, 2022, 201, 117763.	3.0	8
228	Performance characteristics of HFC-134a and HFC-410A refrigeration system using a short-tube orifice as an expansion device. Heat and Mass Transfer, 2011, 47, 1219-1227.	1.2	7
229	Nanofluids Flow Between Two Rotating Cylinders: Effects of Thermophoresis and Brownian Motion. Journal of Thermophysics and Heat Transfer, 2013, 27, 748-755.	0.9	7
230	Evaluation of the performance of the empirical correlations used to predict R134a's boiling frictional pressure drop inside smooth and corrugated tubes. International Communications in Heat and Mass Transfer, 2017, 81, 8-18.	2.9	7
231	Enhancing thermal behavior of SiC nanopowder and SiC/Water nanofluid by using cryogenic treatment. Advances in Materials and Processing Technologies, 2018, 4, 402-415.	0.8	7
232	An investigation of the thermal behavior of constructal theory-based pore-scale porous media by using a combination of computational fluid dynamics and machine learning. International Journal of Heat and Mass Transfer, 2022, 194, 123072.	2.5	7
233	Thermal performance of a spirally coiled finned tube heat exchanger under wet-Surface conditions. Journal of Mechanical Science and Technology, 2006, 20, 212-226.	0.7	6
234	NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE FLOW CHARACTERISTICS OF R134a FLOWING THROUGH ADIABATIC HELICAL CAPILLARY TUBES. International Journal of Air-Conditioning and Refrigeration, 2012, 20, 1250019.	0.8	6

#	Article	IF	CITATIONS
235	Optimal characteristics and heat transfer efficiency of SiO ₂ /water nanofluid for application of energy devices: A comprehensive study. International Journal of Energy Research, 2019, 43, 8548.	2.2	6
236	Effect of coated mesh wick on the performance of cylindrical heat pipe using graphite nanofluids. Journal of Thermal Analysis and Calorimetry, 2021, 146, 297-309.	2.0	6
237	Analytical methods for the efficiency of annular fins with rectangular and hyperbolic profiles under partially wet surface conditions. Numerical Heat Transfer; Part A: Applications, 2021, 80, 617-634.	1.2	6
238	A CFD Study of [C2mim][CH3SO3]/Al2O3 Ionanofluid Flow and Heat Transfer in Grooved Tubes. International Journal of Thermophysics, 2021, 42, 1.	1.0	6
239	Experimental and numerical studies on heat transfer enhancement for air conditioner condensers using a wavy fin with a rectangular winglet. Journal of Mechanical Science and Technology, 2020, 34, 4307-4322.	0.7	5
240	Numerical study and optimisation of the boiling of refrigerant in a vertical corrugated tube using vapour phase tracking. International Journal of Heat and Mass Transfer, 2022, 183, 122116.	2.5	5
241	A Numerical Investigation of Nanofluids Forced Convection Flow in a Horizontal Smooth Tube. , 2010, , .		4
242	Comparison of Various Alternative Refrigerants for Vapour Compression Refrigeration Systems. , 2011,		4
243	The New Mathematical Models for Plain Fin-and-Tube Heat Exchangers With Dehumidification. Journal of Heat Transfer, 2015, 137, .	1.2	4
244	Effect of Filling Ratio and Tilt Angle on the Performance of a Mini-Loop Thermosyphon. Journal of Thermal Science and Engineering Applications, 2019, 11, .	0.8	4
245	Flow boiling pressure drop of R134a in the counter flow multiport minichannel heat exchangers. Experimental Thermal and Fluid Science, 2011, , .	1.5	3
246	Flow Pattern, Heat Transfer and Pressure Drop Behaviors of Micro-Channel Flow Boiling. , 2018, , .		2
247	A Critical Review on the Determination of Convective Heat Transfer Coefficient During Condensation in Smooth and Enhanced Tubes. , 2013, , .		1
248	Fundamental Basis and Application of Cold-Room Project Design: A Case Study of Frigoship. , 2013, , .		1
249	Single-Phase Heat Transfer in the Straight and Helically Coiled Tubes. , 2013, , .		1
250	A Focus on the Literature Review of Nanorefrigerants. , 2014, , .		1
251	Refrigerated Railroad Car Design for Shipping Frozen Meat Using Alternative Refrigerants. , 2014, , .		1
252	Heat transfer and pressure drop characteristics of two phase flow in helical coils. Thermal Science and Engineering Progress, 2022, 27, 101143.	1.3	1

Somchai Wongwises

#	Article	IF	CITATIONS
253	Flow Boiling Heat Transfer Characteristics of R-134a in Horizontal and Vertical Mini-Channels. , 2010, ,		0
254	A Comparison on the Heat Transfer and Flow Characteristics of TiO2-Water Nanofluids Having Two Different Chemical Agents. , 2010, , .		0
255	Effects of Pitch and Depth on the Condensation Heat Transfer of R-134a Flowing Through Corrugated Tubes. , 2011, , .		Ο
256	Flow Pattern, Void Fraction and Pressure Drop During Adiabatic Two-Phase Gas-Liquid Flow in Vertical Micro-Channel. , 2012, , .		0
257	Numerical Investigation of the Single Phase Forced Convection Heat Transfer Characteristics of Nanofluid Flowing in Smooth and Micro-Fin Tubes. , 2012, , .		Ο
258	A Critical Review on the Determination of Pressure Drop During Condensation in Smooth and Enhanced Tubes. , 2013, , .		0
259	Mathematical Model for Predicting the Heat Transfer Characteristics of a Helical-Coiled, Crimped, Spiral, Finned-Tube Heat Exchanger. Heat Transfer Engineering, 2014, , 00-00.	1.2	Ο
260	Numerical Investigation of the Single Phase Forced Convection Heat Transfer Characteristics of Nanofluid Flowing in Circular and Noncircular Tubes. , 2015, , .		0
261	An experimental study of adiabatic two-phase gas-liquid flow in helical micro-tube. AIP Conference Proceedings, 2021, , .	0.3	Ο
262	COMPREHENSIVE REVIEW ON THE FLOW CHARACTERISTICS OF TWO-PHASE FLOWS IN INCLINED TUBES. Journal of Thermal Engineering, 0, , 483-549.	0.8	0
263	Effects of Sonication Time on the Stability and Viscosity of Functionalized MWCNT-Based Nanolubricants. Current Nanoscience, 2020, 16, 639-654.	0.7	Ο
264	Experimental comparison of heat transfer characteristics of Enhanced Truck Radiators. Case Studies in Thermal Engineering, 2022, , 102092.	2.8	0