Yifan Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10382031/publications.pdf

Version: 2024-02-01

233421 279798 3,879 45 46 23 citations h-index g-index papers 46 46 46 6964 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando Xâ€ray Absorption Spectroscopic Characterization. Energy and Environmental Materials, 2021, 4, 222-228.	12.8	31
2	Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nature Catalysis, 2021, 4, 36-45.	34.4	189
3	Osmotic pressure-induced pocket-like spheres with Fe single-atom sites for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 13908-13915.	10.3	3
4	Carbon dioxide adsorption and activation on gallium phosphide surface monitored by ambient pressure x-ray photoelectron spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 234002.	2.8	2
5	In Situ Investigation of the Cu/CH 3 NH 3 PbI 3 Interface in Perovskite Device. Advanced Materials Interfaces, 2021, 8, 2100120.	3.7	8
6	Predictions of Chemical Shifts for Reactive Intermediates in CO2 Reduction under Operando Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31554-31560.	8.0	12
7	Trace Key Mechanistic Features of the Arsenite Sequestration Reaction with Nanoscale Zerovalent Iron. Journal of the American Chemical Society, 2021, 143, 16538-16548.	13.7	12
8	Oxidation State and Surface Reconstruction of Cu under CO ₂ Reduction Conditions from <i>In Situ</i> X-ray Characterization. Journal of the American Chemical Society, 2021, 143, 588-592.	13.7	172
9	Probing the surface chemistry for reverse water gas shift reaction on $Pt(1\ 1\ 1)$ using ambient pressure X-ray photoelectron spectroscopy. Journal of Catalysis, 2020, 391, 123-131.	6.2	11
10	An APXPS Probe of Cu/Pd Bimetallic Catalyst Surface Chemistry of CO ₂ Toward CO in the Presence of H ₂ O and H ₂ . Journal of Physical Chemistry C, 2020, 124, 17085-17094.	3.1	2
11	Revealing <i>In Situ</i> Li Metal Anode Surface Evolution upon Exposure to CO ₂ Using Ambient Pressure X-Ray Photoelectron Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 26607-26613.	8.0	21
12	Synergy between a Silver–Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25374-25382.	8.0	19
13	Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Letters, 2020, 20, 1403-1409.	9.1	89
14	Surface-bound sacrificial electron donors in promoting photocatalytic reduction on titania nanocrystals. Nanoscale, 2019, 11, 19512-19519.	5.6	8
15	Generalized Synthetic Strategy for Transition-Metal-Doped Brookite-Phase TiO ₂ Nanorods. Journal of the American Chemical Society, 2019, 141, 16548-16552.	13.7	78
16	Dramatic differences in carbon dioxide adsorption and initial steps of reduction between silver and copper. Nature Communications, 2019, 10, 1875.	12.8	63
17	<i>In Situ</i> X-ray Absorption Spectroscopic Investigation of the Capacity Degradation Mechanism in Mg/S Batteries. Nano Letters, 2019, 19, 2928-2934.	9.1	63
18	Initial Steps in Forming the Electrode–Electrolyte Interface: H2O Adsorption and Complex Formation on the Ag(111) Surface from Combining Quantum Mechanics Calculations and Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society, 2019, 141, 6946-6954.	13.7	19

#	Article	IF	CITATIONS
19	Electrochemical flow cell enabling <i>operando</i> probing of electrocatalyst surfaces by X-ray spectroscopy and diffraction. Physical Chemistry Chemical Physics, 2019, 21, 5402-5408.	2.8	38
20	Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell. Energy Storage Materials, 2019, 16, 498-504.	18.0	39
21	Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2902-2907.	7.1	229
22	X-ray-Induced Fragmentation of Imidazolium-Based Ionic Liquids Studied by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 785-790.	4.6	14
23	A facile route for the synthesis of heterogeneous crystal structures in hierarchical architectures with vacancy-driven defects <i>via</i> the oriented attachment growth mechanism. Journal of Materials Chemistry A, 2018, 6, 10663-10673.	10.3	4
24	Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO ₂ electroreduction. Energy and Environmental Science, 2018, 11, 1204-1210.	30.8	622
25	Strong O 2p–Fe 3d Hybridization Observed in Solution-Grown Hematite Films by Soft X-ray Spectroscopies. Journal of Physical Chemistry B, 2018, 122, 927-932.	2.6	18
26	Linking surface chemistry to photovoltage in Sr-substituted LaFeO ₃ for water oxidation. Journal of Materials Chemistry A, 2018, 6, 22170-22178.	10.3	27
27	X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis. MRS Communications, 2017, 7, 53-66.	1.8	22
28	Using soft x-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 2-9.	1.7	25
29	Two-Dimensional Mesoporous Carbon Doped with Fe–N Active Sites for Efficient Oxygen Reduction. ACS Catalysis, 2017, 7, 7638-7646.	11.2	90
30	Photocatalytic Color Switching of Transition Metal Hexacyanometalate Nanoparticles for High-Performance Light-Printable Rewritable Paper. Nano Letters, 2017, 17, 755-761.	9.1	83
31	X-ray Absorption Spectroscopy Characterization of a Li/S Cell. Nanomaterials, 2016, 6, 14.	4.1	32
32	Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating. Nano Letters, 2016, 16, 3545-3549.	9.1	157
33	X-ray Absorption Spectroscopic Characterization of the Synthesis Process: Revealing the Interactions in Cetyltrimethylammonium Bromide-Modified Sulfur–Graphene Oxide Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 10111-10117.	3.1	13
34	Tracking the Local Effect of Fluorine Self-Doping in Anodic TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2016, 120, 4623-4628.	3.1	22
35	<i>Acacia Senegal</i> à€"Inspired Bifunctional Binder for Longevity of Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500878.	19.5	223
36	Engineering the metal–organic interface by transferring a high-quality single layer graphene on top of organic materials. Carbon, 2015, 87, 78-86.	10.3	7

#	Article	IF	CITATIONS
37	Structural and Optical Interplay of Palladium-Modified TiO ₂ Nanoheterostructure. Journal of Physical Chemistry C, 2015, 119, 2222-2230.	3.1	18
38	Enhanced Photoreversible Color Switching of Redox Dyes Catalyzed by Bariumâ€Doped TiO ₂ Nanocrystals. Angewandte Chemie - International Edition, 2015, 54, 1321-1326.	13.8	70
39	Enabling unassisted solar water splitting by iron oxide and silicon. Nature Communications, 2015, 6, 7447.	12.8	429
40	Investigation of surface effects through the application of the functional binders in lithium sulfur batteries. Nano Energy, 2015, 16, 28-37.	16.0	112
41	High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy, 2014, 9, 408-416.	16.0	47
42	Low-Temperature Growth Improves Metal/Polymer Interfaces: Vapor-Deposited Ca on PMMA. Journal of Physical Chemistry C, 2014, 118, 6352-6358.	3.1	3
43	High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene. Nano Letters, 2014, 14, 4821-4827.	9.1	683
44	Ca Carboxylate Formation at the Calcium/Poly(methyl methacrylate) Interface. Journal of Physical Chemistry C, 2012, 116, 20465-20471.	3.1	31
45	Electronic structures and chemical reactions at the interface between Li and regioregular poly (3-hexylthiophene). Organic Electronics, 2012, 13, 1060-1067.	2.6	16
46	APXPS of Solid/Liquid Interfaces. ACS Symposium Series, 0, , 67-92.	0.5	3