
Rob Clowes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10377443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using sound to synthesize covalent organic frameworks in water. , 2022, 1, 87-95.		92
2	A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. Journal of the American Chemical Society, 2022, 144, 9434-9442.	13.7	77
3	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .	21.0	82
4	Accelerated Synthesis and Discovery of Covalent Organic Framework Photocatalysts for Hydrogen Peroxide Production. Journal of the American Chemical Society, 2022, 144, 9902-9909.	13.7	154
5	Hydrogen Isotope Separation Using a Metal–Organic Cage Built from Macrocycles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
6	Creating porosity in a trianglimine macrocycle by heterochiral pairing. Chemical Communications, 2021, 57, 6141-6144.	4.1	12
7	Melt-quenched porous organic cage glasses. Journal of Materials Chemistry A, 2021, 9, 19807-19816.	10.3	15
8	Inherent Ethyl Acetate Selectivity in a Trianglimine Molecular Solid. Chemistry - A European Journal, 2021, 27, 10589-10594.	3.3	6
9	Integrated Covalent Organic Framework/Carbon Nanotube Composite as Liâ€lon Positive Electrode with Ultraâ€High Rate Performance. Advanced Energy Materials, 2021, 11, 2101880.	19.5	73
10	Modular Type III Porous Liquids Based on Porous Organic Cage Microparticles. Advanced Functional Materials, 2021, 31, 2106116.	14.9	26
11	Photocatalytic polymers of intrinsic microporosity for hydrogen production from water. Journal of Materials Chemistry A, 2021, 9, 19958-19964.	10.3	36
12	A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chemical Science, 2020, 11, 543-550.	7.4	265
13	Controlling Photocatalytic Activity by Selfâ€Assembly – Tuning Perylene Bisimide Photocatalysts for the Hydrogen Evolution Reaction. Advanced Energy Materials, 2020, 10, 2002469.	19.5	33
14	3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. Journal of the American Chemical Society, 2020, 142, 16842-16848.	13.7	174
15	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	10.3	45
16	A mobile robotic chemist. Nature, 2020, 583, 237-241.	27.8	645
17	An Expandable Hydrogen-Bonded Organic Framework Characterized by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2020, 142, 12743-12750.	13.7	70
18	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie - International Edition, 2020, 59, 7362-7366.	13.8	69

ROB CLOWES

#	Article	IF	CITATIONS
19	Controlling Gas Selectivity in Molecular Porous Liquids by Tuning the Cage Window Size. Angewandte Chemie, 2020, 132, 7432-7436.	2.0	25
20	Barely porous organic cages for hydrogen isotope separation. Science, 2019, 366, 613-620.	12.6	210
21	Aromatic polymers made by reductive polydehalogenation of oligocyclic monomers as conjugated polymers of intrinsic microporosity (C-PIMs). Polymer Chemistry, 2019, 10, 5200-5205.	3.9	7
22	Metal–organic conjugated microporous polymer containing a carbon dioxide reduction electrocatalyst. Sustainable Energy and Fuels, 2019, 3, 2990-2994.	4.9	16
23	Structurally Diverse Covalent Triazine-Based Framework Materials for Photocatalytic Hydrogen Evolution from Water. Chemistry of Materials, 2019, 31, 8830-8838.	6.7	111
24	Synthesis of a Large, Shape-Flexible, Solvatomorphic Porous Organic Cage. Crystal Growth and Design, 2019, 19, 3647-3651.	3.0	21
25	Efficient separation of propane and propene by a hypercrosslinked polymer doped with Ag(<scp>i</scp>). Journal of Materials Chemistry A, 2019, 7, 25521-25525.	10.3	21
26	Complex Phase Behaviour and Structural Transformations of Metalâ€Organic Frameworks with Mixed Rigid and Flexible Bridging Ligands. Chemistry - A European Journal, 2019, 25, 1353-1362.	3.3	2
27	Computationally-inspired discovery of an unsymmetrical porous organic cage. Nanoscale, 2018, 10, 22381-22388.	5.6	34
28	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189.	13.6	883
29	1,3-Diyne-Linked Conjugated Microporous Polymer for Selective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 9254-9260.	3.7	23
30	Innentitelbild: Core-Shell Crystals of Porous Organic Cages (Angew. Chem. 35/2018). Angewandte Chemie, 2018, 130, 11250-11250.	2.0	0
31	Nitrogen Containing Linear Poly(phenylene) Derivatives for Photo-catalytic Hydrogen Evolution from Water. Chemistry of Materials, 2018, 30, 5733-5742.	6.7	88
32	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie, 2018, 130, 11398-11402.	2.0	14
33	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie - International Edition, 2018, 57, 11228-11232.	13.8	45
34	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	11.3	68
35	Functional materials discovery using energy–structure–function maps. Nature, 2017, 543, 657-664.	27.8	348
36	Computational Screening of Porous Organic Molecules for Xenon/Krypton Separation. Journal of Physical Chemistry C, 2017, 121, 15211-15222.	3.1	45

ROB CLOWES

#	Article	IF	CITATIONS
37	Bisâ€Calix[4]arenes: From Ligand Design to the Directed Assembly of a Metal–Organic Trigonal Antiprism. Chemistry - A European Journal, 2016, 22, 8791-8795.	3.3	9
38	Visibleâ€Lightâ€Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts. Angewandte Chemie - International Edition, 2016, 55, 1792-1796.	13.8	372
39	Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chemical Communications, 2016, 52, 10008-10011.	4.1	175
40	Porous Organic Cages for Sulfur Hexafluoride Separation. Journal of the American Chemical Society, 2016, 138, 1653-1659.	13.7	200
41	Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chemical Communications, 2015, 51, 1717-1720.	4.1	34
42	Macroporous metal–organic framework microparticles with improved liquid phase separation. Journal of Materials Chemistry A, 2014, 2, 9085-9090.	10.3	77
43	Network formation mechanisms in conjugated microporous polymers. Polymer Chemistry, 2014, 5, 6325-6333.	3.9	61
44	Hierarchical porous metal–organic framework monoliths. Chemical Communications, 2014, 50, 14314-14316.	4.1	60
45	Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. Journal of Materials Chemistry A, 2013, 1, 3276.	10.3	140
46	Branching out with aminals: microporous organic polymers from difunctional monomers. Polymer Chemistry, 2012, 3, 533-537.	3.9	92
47	A Chiral, Selfâ€Catenating and Porous Metal–Organic Framework and its Post‣ynthetic Metal Uptake. Angewandte Chemie - International Edition, 2012, 51, 5192-5195.	13.8	42
48	Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 2011, 21, 5753.	6.7	30
49	Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. Journal of Materials Chemistry, 2011, 21, 5475.	6.7	302
50	Metal–Organic Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2011, 50, 1072-1075.	13.8	318
51	A Soft Porous Organic Cage Crystal with Complex Gas Sorption Behavior. Chemistry - A European Journal, 2011, 17, 10235-10240.	3.3	85
52	Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). CrystEngComm, 2010, 12, 4063.	2.6	123
53	Synthesis of Uniform Porous Silica Microspheres with Hydrophilic Polymer as Stabilizing Agent. Industrial & Engineering Chemistry Research, 2010, 49, 602-608.	3.7	43
54	Porous silica spheres in macroporous structures and on nanofibres. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4351-4370.	3.4	12

ROB CLOWES

#	Article	IF	CITATIONS
55	High Surface Area Contorted Conjugated Microporous Polymers Based on Spiro-Bipropylenedioxythiophene. Macromolecules, 2010, 43, 7577-7582.	4.8	112
56	Palladium Nanoparticle Incorporation in Conjugated Microporous Polymers by Supercritical Fluid Processing. Chemistry of Materials, 2010, 22, 557-564.	6.7	128
57	Porous organic cages. Nature Materials, 2009, 8, 973-978.	27.5	984
58	Functionalized Conjugated Microporous Polymers. Macromolecules, 2009, 42, 8809-8816.	4.8	352
59	High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chemical Communications, 2009, , 212-214.	4.1	152
60	Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks. Chemistry of Materials, 2009, 21, 204-206.	6.7	350
61	Hydrogen isotope separation using a metalâ€organic cage built from macrocycles. Angewandte Chemie, 0, , .	2.0	2