
José Manuel Baeyens Cabrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1037532/publications.pdf

Version: 2024-02-01

José Manuel Baeyens

#	Article	IF	CITATIONS
1	Evaluation of poly (lactic-co-glycolic acid) nanoparticles to improve the therapeutic efficacy of paclitaxel in breast cancer. BioImpacts, 2022, , .	1.5	1
2	Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomedicine and Pharmacotherapy, 2021, 133, 111059.	5.6	32
3	Sigmaâ€1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. FASEB Journal, 2020, 34, 5951-5966.	0.5	40
4	Urinary bladder sigma-1 receptors: A new target for cystitis treatment. Pharmacological Research, 2020, 155, 104724.	7.1	10
5	Intracolonic Mustard Oil Induces Visceral Pain in Mice by TRPA1-Dependent and -Independent Mechanisms: Role of Tissue Injury and P2X Receptors. Frontiers in Pharmacology, 2020, 11, 613068.	3.5	6
6	Sigma-1 Receptor Inhibition Reduces Neuropathic Pain Induced by Partial Sciatic Nerve Transection in Mice by Opioid-Dependent and -Independent Mechanisms. Frontiers in Pharmacology, 2019, 10, 613.	3.5	33
7	A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacological Research, 2019, 141, 451-465.	7.1	39
8	Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors. Neuropharmacology, 2018, 135, 328-342.	4.1	22
9	Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Research, 2017, 10, 856-875.	10.4	22
10	Visceral and somatic pain modalities reveal Na _V 1.7â€independent visceral nociceptive pathways. Journal of Physiology, 2017, 595, 2661-2679.	2.9	61
11	Mild Social Stress in Mice Produces Opioid-Mediated Analgesia in Visceral but Not Somatic Pain States. Journal of Pain, 2017, 18, 716-725.	1.4	13
12	Sigma-1 receptors control immune-driven peripheral opioid analgesia during inflammation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8396-8401.	7.1	33
13	Use of Very-Low-Dose Methadone and Haloperidol for Pain Control in Palliative Care Patients: Are the Sigma-1 Receptors Involved?. Journal of Palliative Medicine, 2015, 18, 660-660.	1.1	7
14	Genetic Inactivation and Pharmacological Blockade of Sigma-1 Receptors Prevent Paclitaxel-Induced Sensory-Nerve Mitochondrial Abnormalities and Neuropathic Pain in Mice. Molecular Pain, 2014, 10, 1744-8069-10-11.	2.1	56
15	Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology, 2014, 231, 3855-3869.	3.1	54
16	Modulation of Peripheral <i>î¼</i> -Opioid Analgesia by <i>σ</i> ₁ Receptors. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 32-45.	2.5	74
17	Potentiation of morphine-induced mechanical antinociception by $lf1$ receptor inhibition: Role of peripheral $lf1$ receptors. Neuropharmacology, 2013, 70, 348-358.	4.1	63
18	Antiallodynic and Analgesic Effects of Maslinic Acid, a Pentacyclic Triterpenoid from <i>Olea europaea</i> . Journal of Natural Products, 2013, 76, 737-740.	3.0	30

JOSé MANUEL BAEYENS

#	Article	IF	CITATIONS
19	Ϊƒ1Receptors Are Involved in the Visceral Pain Induced by Intracolonic Administration of Capsaicin in Mice. Anesthesiology, 2013, 118, 691-700.	2.5	42
20	Role of Sigma-1 Receptors in Paclitaxel-Induced Neuropathic Pain in Mice. Journal of Pain, 2012, 13, 1107-1121.	1.4	111
21	Pharmacological properties of S1RA, a new sigmaâ€l receptor antagonist that inhibits neuropathic pain and activityâ€induced spinal sensitization. British Journal of Pharmacology, 2012, 166, 2289-2306.	5.4	159
22	Sigma-1 receptors do not regulate calcium influx through voltage-dependent calcium channels in mouse brain synaptosomes. European Journal of Pharmacology, 2012, 677, 102-106.	3.5	7
23	Changes in morphine-induced activation of cerebral Na+,K+-ATPase during morphine tolerance: Biochemical and behavioral consequences. Biochemical Pharmacology, 2012, 83, 1572-1581.	4.4	8
24	Antagonism by haloperidol and its metabolites of mechanical hypersensitivity induced by intraplantar capsaicin in mice: role of sigma-1 receptors. Psychopharmacology, 2009, 205, 21-33.	3.1	57
25	5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. Pain, 2009, 141, 239-247.	4.2	126
26	Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain, 2009, 145, 294-303.	4.2	154
27	Irreversible blockade of sigma-1 receptors by haloperidol and its metabolites in guinea pig brain and SH-SY5Y human neuroblastoma cells. Journal of Neurochemistry, 2007, 102, 812-825.	3.9	59
28	The antinociceptive effect of morphine is reversed by okadaic acid in morphine-naive but not in morphine-tolerant mice. Pharmacology Biochemistry and Behavior, 2007, 86, 21-26.	2.9	3
29	Differences in the allosteric modulation by phenytoin of the binding properties of the $lf1$ ligands [3H](+)-pentazocine and [3H]NE-100. Synapse, 2006, 59, 152-161.	1.2	19
30	Formalin-induced pain is reduced in Ïf1 receptor knockout mice. European Journal of Pharmacology, 2005, 511, 73-74.	3.5	127
31	Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology, 2005, 182, 485-493.	3.1	75
32	Phenytoin differentially modulates the affinity of agonist and antagonist ligands for ?1 receptors of guinea pig brain. Synapse, 2005, 55, 192-195.	1.2	68
33	Inhibitors of serine/threonine protein phosphatases antagonize the antinociception induced by agonists of α2 adrenoceptors and GABAB but not κ-opioid receptors in the tail flick test in mice. Pain, 2005, 114, 212-220.	4.2	9
34	Effects of serine/threonine protein phosphatase inhibitors on morphine-induced antinociception in the tail flick test in mice. European Journal of Pharmacology, 2003, 465, 53-60.	3.5	19
35	Role of Na+,K+-ATPase in Morphine-Induced Antinociception. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 1122-1128.	2.5	28
36	Mechanisms involved in morphine-induced activation of synaptosomal Na+,K+-ATPase. Brain Research, 2002, 957, 311-319.	2.2	23

José Manuel Baeyens

#	Article	IF	CITATIONS
37	The NMDA receptor antagonist dizocilpine (MK-801) stereoselectively inhibits morphine-induced place preference conditioning in mice. Psychopharmacology, 1996, 125, 209-213.	3.1	54
38	Subgroups among μâ€opioid receptor agonists distinguished by ATPâ€sensitive K ⁺ channelâ€acting drugs. British Journal of Pharmacology, 1995, 114, 1296-1302.	5.4	76
39	Electron probe microanalysis of gentamicin-induced changes on ionic composition of the vestibular gelatinous membrane. Hearing Research, 1994, 76, 60-66.	2.0	9
40	Gentamicin Ototoxicity in Otoconia: Quantitative Electron Probe X-ray Microanalysis. Acta Oto-Laryngologica, 1994, 114, 18-23.	0.9	10
41	Rate of L-type calcium channels on yohimbine-precipitated clonidine withdrawal in vivo and in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 601-607.	3.0	6
42	Differential effects of K ⁺ channel blockers on antinociception induced by α ₂ â€adrenoceptor, GABA _B and κâ€opioid receptor agonists. British Journal of Pharmacology, 1993, 110, 1049-1054.	5.4	57
43	Centrally administered aminoglycoside antibiotics antagonize naloxone-precipitated withdrawal in mice acutely dependent on morphine. Neuroscience Letters, 1992, 145, 189-192.	2.1	13
44	Analgesic effects of centrally administered aminoglycoside antibiotics in mice. Neuroscience Letters, 1991, 126, 67-70.	2.1	26
45	Differential effects of L-type calcium channel blockers and stimulants on naloxone-precipitated withdrawal in mice acutely dependent on morphine. Psychopharmacology, 1991, 104, 397-403.	3.1	32
46	Effects of Potassium Channel Openers on Pentylenetetrazoleâ€Induced Seizures in Mice. Basic and Clinical Pharmacology and Toxicology, 1990, 67, 182-184.	0.0	10
47	Analgesic effects of diltiazem and verapamil after central and peripheral administration in the hot-plate test. General Pharmacology, 1990, 21, 681-685.	0.7	41
48	Comparison of the Effects of Calcium and the Calcium Channel Stimulant Bay k 8644 on Neomycinâ€Induced Neuromuscular Blockade. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 398-401.	0.0	5
49	Interactions between Calcium Channel Blockers and Non ardiovascular Drugs: Interactions with Anticancer Drugs. Basic and Clinical Pharmacology and Toxicology, 1988, 63, 1-7.	0.0	9
50	Interactions between Calcium Channel Blockers and Non ardiovascular Drugs: Interactions with Drugs Acting at the Neurornuscular or the CNS Level. Basic and Clinical Pharmacology and Toxicology, 1988, 62, 59-63.	0.0	15
51	Dose-dependent and stereoselective antagonism by diltiazem of naloxone-precipitated morphine abstinence after acute morphine-dependence and. Life Sciences, 1988, 43, 1523-1527.	4.3	24
52	DIFFERENTIAL EFFECTS OF CALCIUM CHANNEL BLOCKING AGENTS ON PANCURONIUM- AND SUXAMETHONIUM-INDUCED NEUROMUSCULAR BLOCKADE. British Journal of Anaesthesia, 1988, 60, 495-499.	3.4	18