Giovanna Cristina Varese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10375044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Widespread Ability of Ligninolytic Fungi to Degrade Hazardous Organic Pollutants as the Basis for the Self-Purification Ability of Natural Ecosystems and for Mycoremediation Technologies. Applied Sciences (Switzerland), 2022, 12, 2164.	2.5	1
2	Dihydroauroglaucin Isolated from the Mediterranean Sponge Grantia compressa Endophyte Marine Fungus Eurotium chevalieri Inhibits Migration of Human Neuroblastoma Cells. Pharmaceutics, 2022, 14, 616.	4.5	2
3	Fungal pretreatment of non-sterile maize silage and solid digestate with a Cephalotrichum stemonitis strain selected from agricultural biogas plants to enhance anaerobic digestion. Biomass and Bioenergy, 2021, 144, 105934.	5.7	9
4	The Essentials of Marine Biotechnology. Frontiers in Marine Science, 2021, 8, .	2.5	75
5	Low density polyethylene degradation by filamentous fungi. Environmental Pollution, 2021, 274, 116548.	7.5	52
6	Corollospora mediterranea: A Novel Species Complex in the Mediterranean Sea. Applied Sciences (Switzerland), 2021, 11, 5452.	2.5	9
7	Screening and evaluation of phenols and furans degrading fungi for the biological pretreatment of lignocellulosic biomass. International Biodeterioration and Biodegradation, 2021, 161, 105246.	3.9	18
8	Insights on Lulworthiales Inhabiting the Mediterranean Sea and Description of Three Novel Species of the Genus Paralulworthia. Journal of Fungi (Basel, Switzerland), 2021, 7, 940.	3.5	7
9	The role of cosubstrate and mixing on fungal biofilm efficiency in the removal of tannins. Environmental Technology (United Kingdom), 2020, 41, 3515-3523.	2.2	8
10	Ecofriendly laccases treatment to challenge micropollutants issue in municipal wastewaters. Environmental Pollution, 2020, 257, 113579.	7.5	35
11	News from the Sea: A New Genus and Seven New Species in the Pleosporalean Families Roussoellaceae and Thyridariaceae. Diversity, 2020, 12, 144.	1.7	20
12	Fungal Diversity in the Neptune Forest: Comparison of the Mycobiota of Posidonia oceanica, Flabellia petiolata, and Padina pavonica. Frontiers in Microbiology, 2020, 11, 933.	3.5	13
13	Cerato-Platanins from Marine Fungi as Effective Protein Biosurfactants and Bioemulsifiers. International Journal of Molecular Sciences, 2020, 21, 2913.	4.1	27
14	The Sponge-Associated Fungus Eurotium chevalieri MUT 2316 and its Bioactive Molecules: Potential Applications in the Field of Antifouling. Marine Biotechnology, 2019, 21, 743-752.	2.4	28
15	Wastewater-Agar as a selection environment: A first step towards a fungal in-situ bioaugmentation strategy. Ecotoxicology and Environmental Safety, 2019, 171, 443-450.	6.0	6
16	Occurrence of selected pharmaceuticals in wastewater treatment plants of Tuscany: An effect-based approach to evaluate the potential environmental impact. International Journal of Hygiene and Environmental Health, 2019, 222, 717-725.	4.3	62
17	The culturable mycobiota associated with the Mediterranean sponges <i>Aplysina cavernicola</i> , <i>Crambe crambe</i> and <i>Phorbas tenacior</i> . FEMS Microbiology Letters, 2019, 366, .	1.8	5
18	Elbamycella rosea gen. et sp. nov. (Juncigenaceae, Torpedosporales) isolated from the Mediterranean Sea. MycoKeys, 2019, 55, 15-28.	1.9	4

#	Article	IF	CITATIONS
19	Wastewater bioremediation using white rot fungi: Validation of a dynamical system with real data obtained in laboratory. Mathematical Methods in the Applied Sciences, 2018, 41, 4195-4207.	2.3	4
20	Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. Science of the Total Environment, 2018, 627, 835-843.	8.0	14
21	Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters. Applied Microbiology and Biotechnology, 2018, 102, 4203-4216.	3.6	16
22	The effects of book disinfection to the airborne microbiological community in a library environment. Aerobiologia, 2018, 34, 29-44.	1.7	10
23	Biotransformation of industrial tannins by filamentous fungi. Applied Microbiology and Biotechnology, 2018, 102, 10361-10375.	3.6	28
24	Basidiomycota isolated from the Mediterranean Sea – Phylogeny and putative ecological roles. Fungal Ecology, 2018, 36, 51-62.	1.6	20
25	Biosorption with autochthonous and allochthonous fungal biomasses for bioremediation and detoxification of landfill leachate. Environmental Earth Sciences, 2018, 77, 1.	2.7	4
26	Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains. Life, 2018, 8, 27.	2.4	27
27	Old Yellow Enzyme homologues in Mucor circinelloides: expression profile and biotransformation. Scientific Reports, 2017, 7, 12093.	3.3	8
28	The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Science of the Total Environment, 2017, 576, 310-318.	8.0	100
29	Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta. Water (Switzerland), 2017, 9, 824.	2.7	23
30	The culturable mycobiota of Flabellia petiolata: First survey of marine fungi associated to a Mediterranean green alga. PLoS ONE, 2017, 12, e0175941.	2.5	59
31	Detection of volatile metabolites of moulds isolated from a contaminated library. Journal of Microbiological Methods, 2016, 128, 34-41.	1.6	16
32	Influence of plant genotype on the cultivable fungiÂassociated to tomato rhizosphere and roots in different soils. Fungal Biology, 2016, 120, 862-872.	2.5	39
33	The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling. Research in Microbiology, 2016, 167, 492-500.	2.1	14
34	Marine fungi as source of new hydrophobins. International Journal of Biological Macromolecules, 2016, 92, 1229-1233.	7.5	31
35	Fungal Bioremediation of Emerging Micropollutants in Municipal Wastewaters. Fungal Biology, 2016, , 115-141.	0.6	2
36	Enzyme-substrate matching in biocatalysis: in silico studies to predict substrate preference of ten putative ene-reductases from Mucor circinelloides MUT44. Journal of Molecular Catalysis B: Enzymatic, 2016, 131, 94-100.	1.8	6

GIOVANNA CRISTINA VARESE

#	Article	IF	CITATIONS
37	Stimulation of laccases from <i>Trametes pubescens</i> : Use in dye decolorization and cotton bleaching. Preparative Biochemistry and Biotechnology, 2016, 46, 639-647.	1.9	9
38	Is digestate safe? A study on its ecotoxicity and environmental risk on a pig manure. Science of the Total Environment, 2016, 551-552, 127-132.	8.0	82
39	The extreme environment of a library: Xerophilic fungi inhabiting indoor niches. International Biodeterioration and Biodegradation, 2015, 99, 1-7.	3.9	88
40	Identification of fungal ene-reductase activity by means of a functional screening. Fungal Biology, 2015, 119, 487-493.	2.5	12
41	Removal of micropollutants by fungal laccases in model solution and municipal wastewater: evaluation of estrogenic activity and ecotoxicity. Journal of Cleaner Production, 2015, 100, 185-194.	9.3	69
42	Evaluation of an eventual ecotoxicity induced by textile effluents using a battery of biotests. Environmental Science and Pollution Research, 2015, 22, 16700-16708.	5.3	12
43	Diversity and Enzymatic Profiling of Halotolerant Micromycetes from Sebkha El Melah, a Saharan Salt Flat in Southern Tunisia. BioMed Research International, 2014, 2014, 1-11.	1.9	27
44	Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments. Science of the Total Environment, 2014, 487, 335-341.	8.0	50
45	Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnology, 2013, 30, 685-694.	4.4	129
46	The Bioremediation Potential of Different Ecophysiological Groups of Fungi. Soil Biology, 2013, , 29-49.	0.8	52
47	Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation. Bioresource Technology, 2012, 123, 106-111.	9.6	69
48	Fungal Waste-Biomasses as Potential Low-Cost Biosorbents for Decolorization of Textile Wastewaters. Water (Switzerland), 2012, 4, 770-784.	2.7	14
49	Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay. Science of the Total Environment, 2012, 432, 389-395.	8.0	30
50	Influence of Culture Medium on Fungal Biomass Composition and Biosorption Effectiveness. Current Microbiology, 2012, 64, 50-59.	2.2	14
51	SELECTION OF STRAINS AND CARRIERS TO COMBINE FUNGI AND ACTIVATED SLUDGE IN WASTEWATER BIOREMEDIATION. Environmental Engineering and Management Journal, 2012, 11, 1789-1796.	0.6	10
52	Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicology and Environmental Safety, 2011, 74, 866-873.	6.0	115
53	Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnology, 2011, 29, 38-45.	4.4	84
54	Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an analytical and ecotoxicological approach. Applied Microbiology and Biotechnology, 2011, 90, 343-352.	3.6	25

#	Article	IF	CITATIONS
55	Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie Van Leeuwenhoek, 2010, 98, 483-504.	1.7	29
56	Industrial dye degradation and detoxification by basidiomycetes belonging to different eco-physiological groups. Journal of Hazardous Materials, 2010, 177, 260-267.	12.4	28
57	Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresource Technology, 2010, 101, 3067-3075.	9.6	100
58	Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents. Water (Switzerland), 2010, 2, 550-565.	2.7	37
59	Decolourisation of model and industrial dyes by mitosporic fungi in different culture conditions. World Journal of Microbiology and Biotechnology, 2009, 25, 1363-1374.	3.6	19
60	Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresource Technology, 2009, 100, 2770-2776.	9.6	82
61	Biosorption of simulated dyed effluents by inactivated fungal biomasses. Bioresource Technology, 2008, 99, 3559-3567.	9.6	69
62	Role of Enzyveba in the aerobic bioremediation and detoxification of a soil freshly contaminated by two different diesel fuels. International Biodeterioration and Biodegradation, 2008, 62, 153-161.	3.9	9
63	Decolourisation and detoxification of textile effluents by fungal biosorption. Water Research, 2008, 42, 2911-2920.	11.3	92
64	Isolation and identification of fungal communities in compost and vermicompost. Mycologia, 2005, 97, 33-44.	1.9	84
65	Isolation and identification of fungal communities in compost and vermicompost. Mycologia, 2005, 97, 33-44.	1.9	121
66	Long-term effects on other fungi are studied in biological and chemical stump treatments in the fight against <i>Heterobasidion annosum</i> coll. Mycologia, 2003, 95, 379-387.	1.9	6
67	Effects of Biological and Chemical Treatments against Heterobasidion annosum on the Microfungal Communities of Picea abies Stumps. Mycologia, 1999, 91, 747.	1.9	10