Taroh Kinoshita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1036923/publications.pdf

Version: 2024-02-01

178 12,389 59 105
papers citations h-index g-index

188 188 188 9683
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Differential use of p24 family members as cargo receptors for the transport of glycosylphosphatidylinositol-anchored proteins and Wnt1. Journal of Biochemistry, 2022, 171, 75-83.	1.7	6
2	C18orf32 loss-of-function is associated with a neurodevelopmental disorder with hypotonia and contractures. Human Genetics, 2022, , 1.	3.8	0
3	Loss of the N-acetylgalactosamine side chain of the GPI-anchor impairs bone formation and brain functions and accelerates the prion disease pathology. Journal of Biological Chemistry, 2022, 298, 101720.	3.4	8
4	Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115083119.	7.1	10
5	Ethanolamineâ€phosphate on the second mannose is a preferential bridge for some GPlâ€anchored proteins. EMBO Reports, 2022, 23, .	4.5	7
6	Establishment of mouse model of inherited PIGO deficiency and the rapeutic potential of AAV-based gene therapy. Nature Communications, 2022,13,.	12.8	4
7	PIGO variants in a boy with features of Mabry syndrome who also exhibits Fryns syndrome with peripheral neuropathy. American Journal of Medical Genetics, Part A, 2021, 185, 845-849.	1.2	0
8	Hrd1-dependent Degradation of the Unassembled PIGK Subunit of the GPI Transamidase Complex. Cell Structure and Function, 2021, 46, 65-71.	1.1	2
9	The Glycosylphosphatidylinositol Anchor Regulates T Cell Antigen Receptor Induced IL-2 Production. Open Journal of Immunology, 2021, 11, 1-24.	0.2	0
10	PIGF deficiency causes a phenotype overlapping with DOORS syndrome. Human Genetics, 2021, 140, 879-884.	3.8	2
11	Inherited glycosylphosphatidylinositol defects cause the rare Emm-negative blood phenotype and developmental disorders. Blood, 2021, 137, 3660-3669.	1.4	18
12	Human SND2 mediates ER targeting of GPIâ€anchored proteins with low hydrophobic GPI attachment signals. FEBS Letters, 2021, 595, 1542-1558.	2.8	13
13	A knockout cell library of GPI biosynthetic genes for functional studies of GPI-anchored proteins. Communications Biology, 2021, 4, 777.	4.4	20
14	PIGG variant pathogenicity assessment reveals characteristic features within 19 families. Genetics in Medicine, 2021, 23, 1873-1881.	2.4	5
15	Functional Analysis of the GPI Transamidase Complex by Screening for Amino Acid Mutations in Each Subunit. Molecules, 2021, 26, 5462.	3.8	5
16	Rescue of Glycosylphosphatidylinositol-Anchored Protein Biosynthesis Using Synthetic Glycosylphosphatidylinositol Oligosaccharides. ACS Chemical Biology, 2021, 16, 2297-2306.	3.4	13
17	A post glycosylphosphatidylinositol (GPI) attachment to proteins, type 2 (PGAP2) variant identified in Mabry syndrome index cases: Molecular genetics of the prototypical inherited GPI disorder. European Journal of Medical Genetics, 2020, 63, 103822.	1.3	8
18	Calnexin mediates the maturation of GPI-anchors through ER retention. Journal of Biological Chemistry, 2020, 295, 16393-16410.	3.4	18

#	Article	IF	Citations
19	PGAP6, a GPI-specific phospholipase A2, has narrow substrate specificity against GPI-anchored proteins. Journal of Biological Chemistry, 2020, 295, 14501-14509.	3.4	12
20	Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biology, 2020, 10, 190290.	3.6	166
21	Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nature Communications, 2020, 11, 860.	12.8	38
22	Bi-allelic Variants in the GPI Transamidase Subunit PIGK Cause a Neurodevelopmental Syndrome with Hypotonia, Cerebellar Atrophy, and Epilepsy. American Journal of Human Genetics, 2020, 106, 484-495.	6.2	22
23	α2,3 linkage of sialic acid to a GPI anchor and an unpredicted GPI attachment site in human prion protein. Journal of Biological Chemistry, 2020, 295, 7789-7798.	3.4	17
24	Paroxysmal nocturnal hemoglobinuria caused by CN-LOH of constitutional PIGB mutation and 70-kbp microdeletion on 15q. Blood Advances, 2020, 4, 5755-5761.	5.2	3
25	Mutations in PIGU Impair the Function of the GPI Transamidase Complex, Causing Severe Intellectual Disability, Epilepsy, and Brain Anomalies. American Journal of Human Genetics, 2019, 105, 395-402.	6.2	39
26	Mutations in PIGB Cause an Inherited GPI Biosynthesis Defect with an Axonal Neuropathy and Metabolic Abnormality in Severe Cases. American Journal of Human Genetics, 2019, 105, 384-394.	6.2	37
27	â€~Stealth' corporate innovation: an emerging threat for therapeutic drug development. Nature Immunology, 2019, 20, 1409-1413.	14.5	7
28	Free, unlinked glycosylphosphatidylinositols on mammalian cell surfaces revisited. Journal of Biological Chemistry, 2019, 294, 5038-5049.	3.4	27
29	Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. Journal of Clinical Investigation, 2019, 129, 5123-5136.	8.2	36
30	Cerebellar Neurodegeneration and Neuronal Circuit Remodeling in Golgi pH Regulator-Deficient Mice. ENeuro, 2019, 6, ENEURO.0427-18.2019.	1.9	13
31	A homozygous variant disrupting the <i>PIGH</i> start-codon is associated with developmental delay, epilepsy, and microcephaly. Human Mutation, 2018, 39, 822-826.	2.5	18
32	Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nature Communications, 2018, 9, 405.	12.8	37
33	<i>N</i> -Glycan–dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing. Journal of Cell Biology, 2018, 217, 585-599.	5.2	51
34	Congenital Defects in the Expression of the Glycosylphosphatidylinositol-Anchored Complement Regulatory Proteins CD59 and Decay-Accelerating Factor. Seminars in Hematology, 2018, 55, 136-140.	3.4	16
35	Epileptic apnea in a patient with inherited glycosylphosphatidylinositol anchor deficiency and PIGT mutations. Brain and Development, 2018, 40, 53-57.	1.1	22
36	Recurrent aseptic meningitis with <i>PIGT</i> mutations: a novel pathogenesis of recurrent meningitis successfully treated by eculizumab. BMJ Case Reports, 2018, 2018, bcr-2018-225910.	0.5	11

#	Article	IF	CITATIONS
37	Mutations in PIGS, Encoding a GPI Transamidase, Cause a Neurological Syndrome Ranging from Fetal Akinesia to Epileptic Encephalopathy. American Journal of Human Genetics, 2018, 103, 602-611.	6.2	44
38	Nuclear envelope localization of PIG-B is essential for GPI-anchor synthesis in <i>Drosophila</i> Journal of Cell Science, 2018, 131, .	2.0	10
39	Lipid moiety of glycosylphosphatidylinositolâ€anchored proteins contributes to the determination of their final destination in yeast. Genes To Cells, 2018, 23, 880-892.	1.2	19
40	Crystallographic analysis of murine p24γ2 Golgi dynamics domain. Proteins: Structure, Function and Bioinformatics, 2017, 85, 764-770.	2.6	10
41	A homozygous PIGN missense mutation in Soft-Coated Wheaten Terriers with a canine paroxysmal dyskinesia. Neurogenetics, 2017, 18, 39-47.	1.4	23
42	Paroxysmal nocturnal haemoglobinuria. Nature Reviews Disease Primers, 2017, 3, 17028.	30.5	299
43	Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Human Molecular Genetics, 2017, 26, 1706-1715.	2.9	39
44	Phenotype-genotype correlations of PIGO deficiency with variable phenotypes from infantile lethality to mild learning difficulties. Human Mutation, 2017, 38, 805-815.	2.5	29
45	Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders. European Journal of Human Genetics, 2017, 25, 669-679.	2.8	63
46	Mutations in the phosphatidylinositol glycan C ($\langle i \rangle$ PIGC $\langle i \rangle$) gene are associated with epilepsy and intellectual disability. Journal of Medical Genetics, 2017, 54, 196-201.	3.2	44
47	Mutations in GPAA1, Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay, Epilepsy, Cerebellar Atrophy, and Osteopenia. American Journal of Human Genetics, 2017, 101, 856-865.	6.2	49
48	Glycan region of GPI anchored-protein is required for cytocidal oligomerization of an anticancer parasporin-2, Cry46Aa1 protein, from Bacillus thuringiensis strain A1547. Journal of Invertebrate Pathology, 2017, 142, 71-81.	3.2	8
49	Pathogenesis of Clonal Dominance in PNH: Growth Advantage in PNH. , 2017, , 229-251.		0
50	Rare Noncoding Mutations Extend the Mutational Spectrum in the <i>PGAP3</i> Subtype of Hyperphosphatasia with Mental Retardation Syndrome. Human Mutation, 2016, 37, 737-744.	2.5	46
51	PIGN prevents protein aggregation in the endoplasmic reticulum independently of its function in the GPI synthesis. Journal of Cell Science, 2016, 130, 602-613.	2.0	13
52	Spatially distinct and metabolically active membrane domain in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5400-5405.	7.1	78
53	3D Structure and Interaction of $p24\hat{l}^2$ and $p24\hat{l}'$ Golgi Dynamics Domains: Implication for $p24$ Complex Formation and Cargo Transport. Journal of Molecular Biology, 2016, 428, 4087-4099.	4.2	38
54	A novel mutation in <i>PIGW</i> causes glycosylphosphatidylinositol deficiency without hyperphosphatasia. American Journal of Medical Genetics, Part A, 2016, 170, 3319-3322.	1.2	22

#	Article	IF	Citations
55	A GPI processing phospholipase A2, PGAP6, modulates Nodal signaling in embryos by shedding CRIPTO. Journal of Cell Biology, 2016, 215, 705-718.	5.2	36
56	Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Science Signaling, 2016, 9, ra101.	3.6	58
57	Thematic Review Series: Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. Journal of Lipid Research, 2016, 57, 6-24.	4.2	207
58	Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia. American Journal of Human Genetics, 2016, 98, 615-626.	6.2	71
59	A novel <i>PIGN</i> mutation and prenatal diagnosis of inherited glycosylphosphatidylinositol deficiency. American Journal of Medical Genetics, Part A, 2016, 170, 183-188.	1.2	25
60	Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology: Introduction to a Thematic Review Series. Journal of Lipid Research, 2016, 57, 4-5.	4.2	48
61	Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis. PLoS ONE, 2015, 10, e0138553.	2.5	19
62	Structural Changes of GPI Anchor After Its Attachment to Proteins: Functional Significance. Advances in Experimental Medicine and Biology, 2015, 842, 17-25.	1.6	8
63	Cerebral visual impairment and intellectual disability caused by PGAP1 variants. European Journal of Human Genetics, 2015, 23, 1689-1693.	2.8	15
64	Mutations in <i>PIGL</i> in a patient with Mabry syndrome. American Journal of Medical Genetics, Part A, 2015, 167, 777-785.	1,2	30
65	Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport. Molecular Biology of the Cell, 2015, 26, 3071-3084.	2.1	88
66	Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology, 2015, 25, 1323-1324.	2.5	818
67	Mutations in (i>PIGY (/i): expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Human Molecular Genetics, 2015, 24, 6146-6159.	2.9	64
68	Congenital Disorders of Glycosylation: Glycosylphosphatidylinositol (GPI)-Related., 2015, , 1229-1236.		1
69	Glycan-Mediated Protein Transport from the Endoplasmic Reticulum. , 2015, , 21-34.		0
70	Enzymatic mechanism of GPI anchor attachment clarified. Cell Cycle, 2014, 13, 1838-1839.	2.6	22
71	Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells. BMC Genomics, 2014, 15, 1016.	2.8	16
72	Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy. PLoS Genetics, 2014, 10, e1004320.	3.5	72

#	Article	IF	Citations
73	New insights into the functions of PIGF, a protein involved in the ethanolamine phosphate transfer steps of glycosylphosphatidylinositol biosynthesis. Biochemical Journal, 2014, 463, 249-256.	3.7	9
74	<i>PIGA</i> mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology, 2014, 82, 1587-1596.	1.1	93
75	<i><scp>PIGO</scp></i> mutations in intractable epilepsy and severe developmental delay with mild elevation of alkaline phosphatase levels. Epilepsia, 2014, 55, e13-7.	5.1	38
76	The \hat{l} ±-Helical Region in p24 \hat{l} 32 Subunit of p24 Protein Cargo Receptor Is Pivotal for the Recognition and Transport of Glycosylphosphatidylinositol-anchored Proteins. Journal of Biological Chemistry, 2014, 289, 16835-16843.	3.4	29
77	PIGN mutations cause congenital anomalies, developmental delay, hypotonia, epilepsy, and progressive cerebellar atrophy. Neurogenetics, 2014, 15, 85-92.	1.4	57
78	Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Human Molecular Genetics, 2014, 23, 3200-3211.	2.9	222
79	Novel compound heterozygous PIGT mutations caused multiple congenital anomalies-hypotonia-seizures syndrome 3. Neurogenetics, 2014, 15, 193-200.	1.4	61
80	Mutations in PGAP3 Impair GPI-Anchor Maturation, Causing a Subtype of Hyperphosphatasia with Mental Retardation. American Journal of Human Genetics, 2014, 94, 278-287.	6.2	88
81	Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in <i>PIGW</i> is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. Journal of Medical Genetics, 2014, 51, 203-207.	3.2	93
82	Biosynthesis and deficiencies of glycosylphosphatidylinositol. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 130-143.	3.8	119
83	Glycosylphosphatidylinositol-N-Acetylglucosaminyltransferase (GPI-GlcNAc Transferase): A Complex Comprised of PIGA, PIGC, PIGH, PIGQ, PIGP, PIGY and DPM2. , 2014, , 1193-1208.		1
84	Congenital Disorders of Glycosylation: Glycosylphosphatidylinositol (GPI) Related., 2014,, 1-7.		0
85	GPI Mannose Extension (PIGM, PIGV, PIGB, PIGZ)., 2014, , 1209-1220.		0
86	Hypomorphic Mutations in PGAP2, Encoding a GPI-Anchor-Remodeling Protein, Cause Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2013, 92, 575-583.	6.2	87
87	Significance of Glycosylphosphatidylinositol-anchored Protein Enrichment in Lipid Rafts for the Control of Autoimmunity. Journal of Biological Chemistry, 2013, 288, 25490-25499.	3.4	30
88	A case of paroxysmal nocturnal hemoglobinuria caused by a germline mutation and a somatic mutation in PIGT. Blood, 2013, 122, 1312-1315.	1.4	77
89	PGAP2 Mutations, Affecting the GPI-Anchor-Synthesis Pathway, Cause Hyperphosphatasia with Mental Retardation Syndrome. American Journal of Human Genetics, 2013, 92, 584-589.	6.2	98
90	Occupancy of whole blood cells by a single <i><scp>PIGA</scp></i> â€mutant clone with <i><scp>HMGA</scp>2</i> amplification in a paroxysmal nocturnal haemoglobinuria patient having blood cells with <scp>NKG</scp> 2D ligands. British Journal of Haematology, 2013, 160, 114-116.	2.5	5

#	Article	IF	Citations
91	Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2473-2478.	4.1	31
92	Vitamin B ₆ –responsive epilepsy due to inherited GPI deficiency. Neurology, 2013, 81, 1467-1469.	1.1	77
93	Glycosylphosphatidylinositol mannosyltransferase II is the rate-limiting enzyme in glycosylphosphatidylinositol biosynthesis under limited dolichol-phosphate mannose availability. Journal of Biochemistry, 2013, 154, 257-264.	1.7	11
94	Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins. Journal of Lipid Research, 2013, 54, 1077-1091.	4.2	33
95	GPHR-Dependent Functions of the Golgi Apparatus Are Essential for the Formation of Lamellar Granules and the Skin Barrier. Journal of Investigative Dermatology, 2012, 132, 2019-2025.	0.7	21
96	Mechanism for Release of Alkaline Phosphatase Caused by Glycosylphosphatidylinositol Deficiency in Patients with Hyperphosphatasia Mental Retardation Syndrome. Journal of Biological Chemistry, 2012, 287, 6318-6325.	3.4	82
97	Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata. Journal of Lipid Research, 2012, 53, 653-663.	4.2	23
98	Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels. Journal of Lipid Research, 2012, 53, 1522-1534.	4.2	41
99	Mutations in PIGO, a Member of the GPI-Anchor-Synthesis Pathway, Cause Hyperphosphatasia with Mental Retardation. American Journal of Human Genetics, 2012, 91, 146-151.	6.2	135
100	GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1050-1058.	2.4	174
101	Enhanced response of T lymphocytes from Pgap3 knockout mouse: Insight into roles of fatty acid remodeling of GPI anchored proteins. Biochemical and Biophysical Research Communications, 2012, 417, 1235-1241.	2.1	20
102	Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Progress in Lipid Research, 2011, 50, 411-424.	11.6	96
103	Impaired FcϵRI stability, signaling, and effector functions in murine mast cells lacking glycosylphosphatidylinositol-anchored proteins. Blood, 2011, 118, 4377-4383.	1.4	9
104	Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. Journal of Cell Biology, 2011, 194, 61-75.	5.2	115
105	Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Letters, 2010, 584, 1670-1677.	2.8	95
106	Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nature Genetics, 2010, 42, 827-829.	21.4	286
107	Biogenesis of GPI-anchored proteins is essential for surface expression of sodium channels in zebrafish Rohon-Beard neurons to respond to mechanosensory stimulation. Development (Cambridge), 2010, 137, 1689-1698.	2.5	36
108	GPI-Anchor: Update for Biosynthesis and Remodeling. Trends in Glycoscience and Glycotechnology, 2010, 22, 182-193.	0.1	1

#	Article	IF	Citations
109	Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17711-17716.	7.1	48
110	GPI Glycan Remodeling by PGAP5 Regulates Transport of GPI-Anchored Proteins from the ER to the Golgi. Cell, 2009, 139, 352-365.	28.9	137
111	Chapter 1 Overview of GPI Biosynthesis. The Enzymes, 2009, 26, 1-30.	1.7	2
112	Trypanosome Glycosylphosphatidylinositol Biosynthesis. Korean Journal of Parasitology, 2009, 47, 197.	1.3	24
113	GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nature Cell Biology, 2008, 10, 1135-1145.	10.3	161
114	Biosynthesis, Remodelling and Functions of Mammalian GPI-anchored Proteins: Recent Progress. Journal of Biochemistry, 2008, 144, 287-294.	1.7	245
115	Designing Sleeping Sickness Control. ACS Chemical Biology, 2008, 3, 601-603.	3.4	6
116	Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochemical Journal, 2008, 409, 555-562.	3.7	90
117	PGAP1 Knock-out Mice Show Otocephaly and Male Infertility. Journal of Biological Chemistry, 2007, 282, 30373-30380.	3.4	84
118	Changes in molecular species profiles of glycosylphosphatidylinositol anchor precursors in early stages of biosynthesis. Journal of Lipid Research, 2007, 48, 1599-1606.	4.2	42
119	Targeted Therapy for Inherited GPI Deficiency. New England Journal of Medicine, 2007, 356, 1641-1647.	27.0	82
120	Fatty Acid Remodeling of GPI-anchored Proteins Is Required for Their Raft Association. Molecular Biology of the Cell, 2007, 18, 1497-1506.	2.1	177
121	Both Mammalian PIG-M and PIG-X are Required for Growth of GPI14-Disrupted Yeast. Journal of Biochemistry, 2007, 142, 123-129.	1.7	13
122	TbGPl16 is an essential component of GPI transamidase inTrypanosoma brucei. FEBS Letters, 2006, 580, 603-606.	2.8	19
123	Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood, 2006, 108, 4232-4236.	1.4	147
124	Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nature Medicine, 2006, 12, 846-851.	30.7	196
125	A cohort study of the nature of paroxysmal nocturnal hemoglobinuria clones and PIG-A mutations in patients with aplastic anemia. European Journal of Haematology, 2006, 76, 502-509.	2.2	24
126	CHO Glycosylation Mutants: GPI Anchor. Methods in Enzymology, 2006, 416, 182-205.	1.0	42

#	Article	IF	Citations
127	PGAP2 Is Essential for Correct Processing and Stable Expression of GPI-anchored Proteins. Molecular Biology of the Cell, 2006, 17, 1410-1420.	2.1	108
128	Removal or Maintenance of Inositol-linked Acyl Chain in Glycosylphosphatidylinositol Is Critical in Trypanosome Life Cycle. Journal of Biological Chemistry, 2006, 281, 11595-11602.	3.4	17
129	Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood, 2005, 106, 3699-3709.	1.4	652
130	Paroxysmal Nocturnal Hemoglobinuria. International Journal of Hematology, 2005, 82, 417-421.	1.6	10
131	Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nature Medicine, 2005, 11, 160-166.	30.7	218
132	The Initial Enzyme for Glycosylphosphatidylinositol Biosynthesis Requires PIG-Y, a Seventh Component. Molecular Biology of the Cell, 2005, 16, 5236-5246.	2.1	53
133	PIG-V Involved in Transferring the Second Mannose in Glycosylphosphatidylinositol. Journal of Biological Chemistry, 2005, 280, 9489-9497.	3.4	74
134	GPI7 Is the Second Partner of PIG-F and Involved in Modification of Glycosylphosphatidylinositol. Journal of Biological Chemistry, 2005, 280, 9728-9734.	3.4	47
135	Mammalian PIG-X and Yeast Pbn1p Are the Essential Components of Glycosylphosphatidylinositol-Mannosyltransferase I. Molecular Biology of the Cell, 2005, 16, 1439-1448.	2.1	68
136	New mutant Chinese hamster ovary cell representing an unknown gene for attachment of glycosylphosphatidylinositol to proteins. Biochemical and Biophysical Research Communications, 2005, 335, 1060-1069.	2.1	5
137	Inositol Deacylation of Glycosylphosphatidylinositol-anchored Proteins Is Mediated by Mammalian PGAP1 and Yeast Bst1p. Journal of Biological Chemistry, 2004, 279, 14256-14263.	3.4	157
138	Surface Sialic Acids Taken from the Host Allow Trypanosome Survival in Tsetse Fly Vectors. Journal of Experimental Medicine, 2004, 199, 1445-1450.	8.5	78
139	Enhanced Responses of Glycosylphosphatidylinositol Anchor-Deficient T Lymphocytes. Journal of Immunology, 2004, 173, 3810-3815.	0.8	11
140	GPI-anchor deficiency in myeloid cells causes impaired FcγR effector functions. Blood, 2004, 104, 2825-2831.	1.4	18
141	Molecular Genetics of Paroxysmal Nocturnal Hemoglobinuria. International Journal of Hematology, 2003, 77, 107-112.	1.6	49
142	Human PIG-U and Yeast Cdc91p Are the Fifth Subunit of GPI Transamidase That Attaches GPI-Anchors to Proteins. Molecular Biology of the Cell, 2003, 14, 1780-1789.	2.1	109
143	Two Subunits of Glycosylphosphatidylinositol Transamidase, GPI8 and PIG-T, Form a Functionally Important Intermolecular Disulfide Bridge. Journal of Biological Chemistry, 2003, 278, 13959-13967.	3.4	7 5
144	PIG-W Is Critical for Inositol Acylation but Not for Flipping of Glycosylphosphatidylinositol-Anchor. Molecular Biology of the Cell, 2003, 14, 4285-4295.	2.1	93

#	Article	IF	CITATIONS
145	GPI transamidase of Trypanosoma brucei has two previously uncharacterized (trypanosomatid) Tj ETQq1 1 0.7843 the United States of America, 2003, 100, 10682-10687.	314 rgBT / 7.1	Overlock 1 53
146	Overview of Paroxysmal Nocturnal Hemoglobinuria: Molecular Genetics., 2003,, 3-9.		1
147	Serial Analysis of Clonal Expansion in PNH by Flow Cytometry. , 2003, , 235-237.		1
148	Long-Term Support of Human Hematopoiesis by a Single Stem Cell Clone. , 2003, , 243-246.		0
149	The Clinical Course of PNH in the USA and in JAPAN. , 2003, , 239-241.		0
150	Structural Requirements for the Recruitment of Gaa1 into a Functional Glycosylphosphatidylinositol Transamidase Complex. Journal of Biological Chemistry, 2002, 277, 30535-30542.	3.4	43
151	Long-term support of hematopoiesis by a single stem cell clone in patients with paroxysmal nocturnal hemoglobinuria. Blood, 2002, 99, 2748-2751.	1.4	37
152	Inefficient response of T lymphocytes to glycosylphosphatidylinositol anchor–negative cells: implications for paroxysmal nocturnal hemoglobinuria. Blood, 2002, 100, 4116-4122.	1.4	66
153	The glycan core of GPI-anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction. FEBS Letters, 2002, 512, 249-254.	2.8	42
154	Relationship Between Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria. International Journal of Hematology, 2002, 75, 117-122.	1.6	34
155	Transgenic pigs expressing human decay-accelerating factor regulated by porcine MCP gene promoter. Molecular Reproduction and Development, 2002, 61, 302-311.	2.0	44
156	Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum α-toxin. EMBO Journal, 2002, 21, 5047-5056.	7.8	105
157	Efficient retrovirus-mediated PIG-A gene transfer and stable restoration of GPI-anchored protein expression in cells with the PNH phenotype. Blood, 2001, 97, 3004-3010.	1.4	25
158	Dissecting and manipulating the pathway for glycosylphos-phatidylinositol-anchor biosynthesis. Current Opinion in Chemical Biology, 2000, 4, 632-638.	6.1	181
159	Gaalp and Gpi8p Are Components of a Glycosylphosphatidylinositol (GPI) Transamidase That Mediates Attachment of GPI to Proteins. Molecular Biology of the Cell, 2000, 11, 1523-1533.	2.1	120
160	Requirement of PIG-F and PIG-O for Transferring Phosphoethanolamine to the Third Mannose in Glycosylphosphatidylinositol. Journal of Biological Chemistry, 2000, 275, 20911-20919.	3.4	73
161	Porcine MCP Gene Promoter Directs High Level Expression of Human DAF (CD55) in Transgenic Mice. Immunobiology, 2000, 201, 583-597.	1.9	3
162	Pig-n, a Mammalian Homologue of Yeast Mcd4p, Is Involved in Transferring Phosphoethanolamine to the First Mannose of the Glycosylphosphatidylinositol. Journal of Biological Chemistry, 1999, 274, 35099-35106.	3.4	123

#	Article	IF	Citations
163	GPI1 Stabilizes an Enzyme Essential in the First Step of Glycosylphosphatidylinositol Biosynthesis. Journal of Biological Chemistry, 1999, 274, 18582-18588.	3.4	35
164	CD59-deficient blood cells and PIG-A gene abnormalities in Japanese patients with aplastic anaemia. British Journal of Haematology, 1999, 104, 523-529.	2.5	39
165	Paroxysmal nocturnal hemoglobinuria: An acquired genetic disease., 1999, 62, 175-182.		82
166	Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochemical Journal, 1999, 339, 185-192.	3.7	77
167	Mammalian PIG-L and its yeast homologue Gpi12p areN-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochemical Journal, 1999, 339, 185.	3.7	61
168	A Homologue of Saccharomyces cerevisiae Dpm1p Is Not Sufficient for Synthesis of Dolichol-Phosphate-Mannose in Mammalian Cells. Journal of Biological Chemistry, 1998, 273, 9249-9254.	3.4	56
169	Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. Biochemical Journal, 1998, 332, 153-159.	3.7	84
170	Expression Cloning of PIG-L, a CandidateN-Acetylglucosaminyl-phosphatidylinositol Deacetylase. Journal of Biological Chemistry, 1997, 272, 15834-15840.	3.4	133
171	A Patient With Paroxysmal Nocturnal Hemoglobinuria Bearing Four Independent PIG-A Mutant Clones. Blood, 1997, 89, 3470-3476.	1.4	73
172	PIG-C, One of the Three Human Genes Involved in the First Step of Glycosylphosphatidylinositol Biosynthesis Is a Homologue of Saccharomyces cerevisiae GPI2. Biochemical and Biophysical Research Communications, 1996, 226, 193-199.	2.1	87
173	PIG-A and PIG-H, Which Participate in Glycosylphosphatidylinositol Anchor Biosynthesis, Form a Protein Complex in the Endoplasmic Reticulum. Journal of Biological Chemistry, 1996, 271, 26868-26875.	3.4	84
174	Analysis of PIG-A gene in a patient who developed reciprocal translocation of chromosome 12 and paroxysmal nocturnal hemoglobinuria during follow-up of aplastic anemia., 1996, 51, 229-233.		19
175	Defective Glycosyl Phosphatidylinositol Anchor Synthesis and Paroxysmal Nocturnal Hemoglobinuria. Advances in Immunology, 1995, 60, 57-103.	2.2	134
176	Abnormalities of PIG-A Transcripts in Granulocytes from Patients with Paroxysmal Nocturnal Hemoglobinuria. New England Journal of Medicine, 1994, 330, 249-255.	27.0	243
177	Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell, 1993, 73, 703-711.	28.9	978
178	Inherited Complete Deficiency of 20-Kilodalton Homologous Restriction Factor (CD59) as a Cause of Paroxysmal Nocturnal Hemoglobinuria. New England Journal of Medicine, 1990, 323, 1184-1189.	27.0	333