Jin-Wook Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/103692/publications.pdf

Version: 2024-02-01

99 papers 5,404 citations

35 h-index 71 g-index

102 all docs 102 docs citations

102 times ranked 8275 citing authors

#	Article	IF	CITATIONS
1	Dapsone Azo-Linked with Two Mesalazine Moieties Is a "Me-Better―Alternative to Sulfasalazine. Pharmaceutics, 2022, 14, 684.	4.5	3
2	Modulation of Intestinal Epithelial Permeability via Protease-Activated Receptor-2-Induced Autophagy. Cells, 2022, 11, 878.	4.1	7
3	Nitric Oxide-Releasing Bacterial Cellulose/Chitosan Crosslinked Hydrogels for the Treatment of Polymicrobial Wound Infections. Pharmaceutics, 2022, 14, 22.	4.5	13
4	Cerebral angiography using transauricular access in a rabbit model: a new technique. Acta Radiologica, 2021, 62, 113-119.	1.1	1
5	Design and evaluation of IKK-activated GSK3 \hat{l}^2 inhibitory peptide as an inflammation-responsive anti-colitic therapeutic. Biomaterials Science, 2021, 9, 6584-6596.	5.4	3
6	Preparation and Evaluation of Colon-Targeted Prodrugs of the Microbial Metabolite 3-Indolepropionic Acid as an Anticolitic Agent. Molecular Pharmaceutics, 2021, 18, 1730-1741.	4.6	13
7	Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake. European Journal of Medicinal Chemistry, 2021, 217, 113325.	5.5	12
8	Tumor-Penetrable Nitric Oxide-Releasing Nanoparticles Potentiate Local Antimelanoma Therapy. ACS Applied Materials & Date:	8.0	13
9	Development of clindamycin-loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA-infected wounds. Journal of Pharmaceutical Investigation, 2021, 51, 597-610.	5. 3	27
10	Novel Anti-Melanogenic Compounds, (Z)-5-(Substituted Benzylidene)-4-thioxothiazolidin-2-one Derivatives: In Vitro and In Silico Insights. Molecules, 2021, 26, 4963.	3.8	6
11	pH-Responsive Alginate-Based Microparticles for Colon-Targeted Delivery of Pure Cyclosporine A Crystals to Treat Ulcerative Colitis. Pharmaceutics, 2021, 13, 1412.	4.5	18
12	Diethylenetriamine/NONOate-doped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds. Carbohydrate Polymers, 2021, 270, 118387.	10.2	37
13	Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydrate Polymers, 2021, 272, 118462.	10.2	44
14	Eletrophilic Chemistry of Tranilast Is Involved in Its Anti-Colitic Activity via Nrf2-HO-1 Pathway Activation. Pharmaceuticals, 2021, 14, 1092.	3.8	3
15	Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. International Journal of Biological Macromolecules, 2020, 142, 680-692.	7.5	79
16	5-Aminosalicylic Acid Azo-Coupled with a GPR109A Agonist Is a Colon-Targeted Anticolitic Codrug with a Reduced Risk of Skin Toxicity. Molecular Pharmaceutics, 2020, 17, 167-179.	4.6	14
17	Stabilizing Coacervate by Microfluidic Engulfment Induced by Controlled Interfacial Energy. Biomacromolecules, 2020, 21, 930-938.	5.4	5
18	Nitric Oxide-Releasing Thermoresponsive Pluronic F127/Alginate Hydrogel for Enhanced Antibacterial Activity and Accelerated Healing of Infected Wounds. Pharmaceutics, 2020, 12, 926.	4.5	32

#	Article	IF	CITATIONS
19	Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomaterialia, 2020, 116, 368-382.	8.3	44
20	Recent advances of nanocellulose in drug delivery systems. Journal of Pharmaceutical Investigation, 2020, 50, 553-572.	5.3	69
21	Nitric Oxide-Releasing S-Nitrosoglutathione-Conjugated Poly(Lactic-Co-Glycolic Acid) Nanoparticles for the Treatment of MRSA-Infected Cutaneous Wounds. Pharmaceutics, 2020, 12, 618.	4.5	38
22	Curcumin Nanocrystal/pH-Responsive Polyelectrolyte Multilayer Core–Shell Nanoparticles for Inflammation-Targeted Alleviation of Ulcerative Colitis. Biomacromolecules, 2020, 21, 3571-3581.	5.4	64
23	Enhanced Viability of Probiotics against Gastric Acid by One-Step Coating Process with Poly-L-Lysine: In Vitro and In Vivo Evaluation. Pharmaceutics, 2020, 12, 662.	4.5	11
24	A Colon-Targeted Prodrug, 4-Phenylbutyric Acid-Glutamic Acid Conjugate, Ameliorates 2,4-Dinitrobenzenesulfonic Acid-Induced Colitis in Rats. Pharmaceutics, 2020, 12, 843.	4.5	12
25	miR-23a-3p is a Key Regulator of IL-17C-Induced Tumor Angiogenesis in Colorectal Cancer. Cells, 2020, 9, 1363.	4.1	26
26	In vitro and in vivo evaluation of a novel nitric oxide-releasing ointment for the treatment of methicillin-resistant Staphylococcus aureus-infected wounds. Journal of Pharmaceutical Investigation, 2020, 50, 505-512.	5.3	21
27	Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Archives of Pharmacal Research, 2020, 43, 153-169.	6.3	130
28	A colon-specific prodrug of metoclopramide ameliorates colitis in an experimental rat model. Drug Design, Development and Therapy, 2019, Volume 13, 231-242.	4.3	7
29	Pharmacokinetic Evaluation of Metabolic Drug Interactions between Repaglinide and Celecoxib by a Bioanalytical HPLC Method for Their Simultaneous Determination with Fluorescence Detection. Pharmaceutics, 2019, 11, 382.	4.5	14
30	Colon-Targeted Delivery Facilitates the Therapeutic Switching of Sofalcone, a Gastroprotective Agent, to an Anticolitic Drug via Nrf2 Activation. Molecular Pharmaceutics, 2019, 16, 4007-4016.	4.6	10
31	Sofalcone, a gastroprotective drug, covalently binds to KEAP1 to activate Nrf2 resulting in anti-colitic activity. European Journal of Pharmacology, 2019, 865, 172722.	3.5	17
32	Pro‑apoptotic effect of the novel benzylidene derivative MHY695 in human colon cancer cells. Oncology Letters, 2019, 18, 3256-3264.	1.8	3
33	Transcriptomic Identification and Biochemical Characterization of HmpA, a Nitric Oxide Dioxygenase, Essential for Pathogenesis of Vibrio vulnificus. Frontiers in Microbiology, 2019, 10, 2208.	3.5	9
34	In Situ Hydrogel-Forming/Nitric Oxide-Releasing Wound Dressing for Enhanced Antibacterial Activity and Healing in Mice with Infected Wounds. Pharmaceutics, 2019, 11, 496.	4.5	48
35	Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris. Developmental and Comparative Immunology, 2019, 99, 103399.	2.3	25
36	Bacteria-Targeted Clindamycin Loaded Polymeric Nanoparticles: Effect of Surface Charge on Nanoparticle Adhesion to MRSA, Antibacterial Activity, and Wound Healing. Pharmaceutics, 2019, 11, 236.	4.5	65

#	Article	IF	CITATIONS
37	PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Materials Science and Engineering C, 2019, 103, 109741.	7.3	66
38	Conjugation of Amisulpride, an Anti-Psychotic Agent, with 5-Aminosalicylic Acid via an Azo Bond Yields an Orally Active Mutual Prodrug against Rat Colitis. Pharmaceutics, 2019, 11, 585.	4. 5	7
39	Development of a Resveratrol Nanosuspension Using the Antisolvent Precipitation Method without Solvent Removal, Based on a Quality by Design (QbD) Approach. Pharmaceutics, 2019, 11, 688.	4.5	31
40	Development of PLGA micro- and nanorods with high capacity of surface ligand conjugation for enhanced targeted delivery. Asian Journal of Pharmaceutical Sciences, 2019, 14, 86-94.	9.1	40
41	Therapeutic switching of sulpiride, an anti-psychotic and prokinetic drug, to an anti-colitic drug using colon-specific drug delivery. Drug Delivery and Translational Research, 2019, 9, 334-343.	5 . 8	11
42	pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 823-834.	3.3	45
43	In vitro and in vivo evaluation of MHY908-loaded nanostructured lipid carriers for the topical treatment of hyperpigmentation. Journal of Drug Delivery Science and Technology, 2018, 48, 457-465.	3.0	4
44	S-Nitrosoglutathione loaded poly(lactic-co-glycolic acid) microparticles for prolonged nitric oxide release and enhanced healing of methicillin-resistant Staphylococcus aureus-infected wounds. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 94-102.	4.3	33
45	Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease. Carbohydrate Polymers, 2018, 198, 434-442.	10.2	62
46	Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase. International Journal of Molecular Sciences, 2018, 19, 53.	4.1	34
47	Colon-targeted delivery of cyclosporine A using dual-functional Eudragit [®] FS30D/PLGA nanoparticles ameliorates murine experimental colitis. International Journal of Nanomedicine, 2018, Volume 13, 1225-1240.	6.7	76
48	Is it worth expending energy to convert biliverdin into bilirubin?. Free Radical Biology and Medicine, 2018, 124, 232-240.	2.9	22
49	Crystal structure of peroxiredoxin 3 from <i>Vibrio vulnificus</i> and its implications for scavenging peroxides and nitric oxide. IUCrJ, 2018, 5, 82-92.	2.2	10
50	A three-dimensional assemblage of gingiva-derived mesenchymal stem cells and NO-releasing microspheres for improved differentiation. International Journal of Pharmaceutics, 2017, 520, 163-172.	5 . 2	16
51	The In Vitro and In Vivo Anti-Inflammatory Effects of a Phthalimide PPAR-Î ³ Agonist. Marine Drugs, 2017, 15, 7.	4.6	37
52	Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes. Drug Design, Development and Therapy, 2017, Volume11, 419-429.	4.3	12
53	Hormone Therapy and Delivery Strategies against Cardiovascular Diseases. Current Pharmaceutical Biotechnology, 2017, 18, 285-302.	1.6	2
54	Increased therapeutic efficacy of a newly synthesized tyrosinase inhibitor by solid lipid nanoparticles in the topical treatment of hyperpigmentation. Drug Design, Development and Therapy, 2016, Volume 10, 3947-3957.	4.3	19

#	Article	IF	CITATIONS
55	Probiotic delivery systems: a brief overview. Journal of Pharmaceutical Investigation, 2016, 46, 377-386.	5.3	36
56	Herceptin-functionalized pure paclitaxel nanocrystals for enhanced delivery to HER2-postive breast cancer cells. International Journal of Pharmaceutics, 2016, 513, 543-553.	5.2	31
57	Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester, a polymeric colon-specific prodrug releasing 5-aminosalicylic acid and benzocaine, ameliorates TNBS-induced rat colitis. Journal of Drug Targeting, 2016, 24, 468-474.	4.4	8
58	Intraocular Pharmacokinetics of Povidone-lodine and Its Effects on Experimental <i>Staphylococcus epidermidis </i> Endophthalmitis., 2015, 56, 6694.		17
59	Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles. International Journal of Nanomedicine, 2015, 10, 4565.	6.7	15
60	Design of a gelatin microparticle-containing self-microemulsifying formulation for enhanced oral bioavailability of dutasteride. Drug Design, Development and Therapy, 2015, 9, 3231.	4.3	8
61	Design, synthesis, and anti-melanogenic effects of (E)-2-benzoyl-3-(substituted phenyl)acrylonitriles. Drug Design, Development and Therapy, 2015, 9, 4259.	4.3	10
62	Evaluation of glycine-bearing celecoxib derivatives as a colon-specific mutual prodrug acting on nuclear factor-κB, an anti-inflammatory target. Drug Design, Development and Therapy, 2015, 9, 4227.	4.3	3
63	Improving dissolution and oral bioavailability of pranlukast hemihydrate by particle surface modification with surfactants and homogenization. Drug Design, Development and Therapy, 2015, 9, 3257.	4.3	2
64	Colon-targeted delivery of piceatannol enhances anti-colitic effects of the natural product: potential molecular mechanisms for therapeutic enhancement. Drug Design, Development and Therapy, 2015, 9, 4247.	4.3	7
65	Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. International Journal of Nanomedicine, 2015, 10, 3065.	6.7	104
66	Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process. Drug Design, Development and Therapy, 2015, 9, 4269.	4.3	16
67	Celecoxib coupled to dextran via a glutamic acid linker yields a polymeric prodrug suitable for colonic delivery. Drug Design, Development and Therapy, 2015, 9, 4105.	4.3	6
68	Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Design, Development and Therapy, 2015, 9, 3789.	4.3	45
69	(E)-2-Cyano-3-(substituted phenyl)acrylamide analogs as potent inhibitors of tyrosinase: A linear β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorganic and Medicinal Chemistry, 2015, 23, 7728-7734.	3.0	26
70	Nitric oxide-releasing chitosan film for enhanced antibacterial and in vivo wound-healing efficacy. International Journal of Biological Macromolecules, 2015, 79, 217-225.	7. 5	88
71	Dexamethasone phosphate-loaded folate-conjugated polymeric nanoparticles for selective delivery to activated macrophages and suppression of inflammatory responses. Macromolecular Research, 2015, 23, 485-492.	2.4	33
72	Phospho sulfonic acid: an efficient and recyclable solid acid catalyst for the solvent-free synthesis of α-hydroxyphosphonates and their anticancer properties. New Journal of Chemistry, 2015, 39, 3916-3922.	2.8	32

#	Article	IF	CITATIONS
73	Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium. Biochemical and Biophysical Research Communications, 2014, 446, 971-976.	2.1	12
74	Synthesis of 2-amino-3-cyano-4H-chromen-4-ylphosphonates and their anticancer properties. European Journal of Medicinal Chemistry, 2014, 76, 61-66.	5.5	40
75	Hyperbranched aliphatic polyether esters by ringâ€opening polymerization of epoxidized 2â€hydroxyethyl methacrylate. Journal of Polymer Science Part A, 2014, 52, 1643-1651.	2.3	4
76	Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids and Surfaces B: Biointerfaces, 2014, 123, 271-278.	5.0	70
77	Size-controlled biodegradable nanoparticles: Preparation and size-dependent cellular uptake and tumor cell growth inhibition. Colloids and Surfaces B: Biointerfaces, 2014, 122, 545-551.	5.0	100
78	Antimicrobial Mechanisms of Nitric Oxide and Strategies for Developing Nitric Oxide-based Antimicrobial Agents. Korean Journal of Microbiology, 2014, 50, 87-94.	0.2	0
79	Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3270-3275.	7.1	456
80	Recent advances in PLGA particulate systems for drug delivery. Journal of Pharmaceutical Investigation, 2012, 42, 155-163.	5.3	42
81	Toward improved selectivity of targeted delivery: The potential of magnetic nanoparticles. Archives of Pharmacal Research, 2012, 35, 1-2.	6.3	9
82	Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nature Reviews Drug Discovery, 2011, 10, 521-535.	46.4	1,038
83	Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 1247-1256.	13.7	226
84	Designing micro- and nano-particles for treating rheumatoid arthritis. Archives of Pharmacal Research, 2011, 34, 1887-1897.	6.3	74
85	pH-sensitive Eudragit nanoparticles for mucosal drug delivery. International Journal of Pharmaceutics, 2011, 403, 262-267.	5.2	131
86	Characterization of nitric oxideâ€releasing microparticles for the mucosal delivery. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1233-1243.	4.0	26
87	Factors that Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects. Current Pharmaceutical Design, 2010, 16, 2298-2307.	1.9	451
88	Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry. Macromolecular Rapid Communications, 2010, 31, 142-148.	3.9	96
89	Pharmacological activity and protein phosphorylation caused by nitric oxide-releasing microparticles. Biomaterials, 2010, 31, 552-558.	11.4	24
90	Polymer particles that switch shape in response to a stimulus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11205-11210.	7.1	225

#	‡	Article	IF	CITATIONS
9)1	In vivo evaluation of vaginal films for mucosal delivery of nitric oxide. Biomaterials, 2009, 30, 3978-3985.	11.4	49
9	92	Assessment of diffusion coefficient from mucoadhesive barrier devices using artificial neural networks. International Journal of Pharmaceutics, 2008, 351, 119-126.	5.2	17
9	93	ICAM-1 expression in vaginal cells as a potential biomarker for inflammatory response. Biomarkers, 2008, 13, 257-269.	1.9	6
9	94	Synthesis of Amphiphilic Miktoarm Star Copolymers of Poly(n-hexyl isocyanate) and Poly(ethylene) Tj ETQq0 0 0	rgBT/Ove 4.8	rlock 10 Tf 5 26
9	95	The physicodynamic properties of mucoadhesive polymeric films developed as female controlled drug delivery system. International Journal of Pharmaceutics, 2006, 309, 139-145.	5.2	98
9	96	Drug delivery systems for hormone therapy. Journal of Controlled Release, 2006, 112, 1-14.	9.9	60
9) 7	Transport of anti-allergic drugs across the passage cultured human nasal epithelial cell monolayer. European Journal of Pharmaceutical Sciences, 2005, 26, 203-210.	4.0	37
9	98	Air-Liquid Interface Culture of Serially Passaged Human Nasal Epithelial Cell Monolayer forIn VitroDrug Transport Studies. Drug Delivery, 2005, 12, 305-311.	5.7	75
9	9	Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharmaceutical Research, 2003, 20, 1690-1696.	3 . 5	52