Vasily M Gelfanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/103679/publications.pdf

Version: 2024-02-01

46 papers 3,471 citations

361413 20 h-index 243625 44 g-index

46 all docs

46 docs citations

46 times ranked

3225 citing authors

#	Article	IF	CITATIONS
1	A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nature Chemical Biology, 2009, 5, 749-757.	8.0	512
2	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	30.7	481
3	Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 2013, 5, 209ra151.	12.4	461
4	Paclitaxel sensitivity of breast cancer cells with constitutively active NF-κB is enhanced by IκBα super-repressor and parthenolide. Oncogene, 2000, 19, 4159-4169.	5.9	277
5	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	30.7	241
6	Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metabolism, 2016, 24, 51-62.	16.2	198
7	Fibroblast Growth Factor 21 Mediates Specific Glucagon Actions. Diabetes, 2013, 62, 1453-1463.	0.6	191
8	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
9	Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Molecular Metabolism, 2019, 20, 51-62.	6.5	130
10	Optimization of coâ€agonism at GLPâ€1 and glucagon receptors to safely maximize weight reduction in DIOâ€rodents. Biopolymers, 2012, 98, 443-450.	2.4	110
11	Peptide lipidation stabilizes structure to enhance biological function. Molecular Metabolism, 2013, 2, 468-479.	6. 5	83
12	Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: A paradigm shift for host–microbe interactions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2461-2466.	7.1	63
13	Glucagon regulation of energy metabolism. Physiology and Behavior, 2010, 100, 545-548.	2.1	62
14	Optimization of the Native Glucagon Sequence for Medicinal Purposes. Journal of Diabetes Science and Technology, 2010, 4, 1322-1331.	2.2	53
15	A Novel Human-Based Receptor Antagonist of Sustained Action Reveals Body Weight Control by Endogenous GLP-1. ACS Chemical Biology, 2011, 6, 135-145.	3.4	45
16	Chemical Synthesis of Insulin Analogs through a Novel Precursor. ACS Chemical Biology, 2014, 9, 683-691.	3.4	38
17	Transformation of interleukin-3–dependent cells without participation of Stat5/bcl-xL: cooperation of akt with raf/erk leads to p65 nuclear factor κB–mediated antiapoptosis involving c-IAP2. Blood, 2001, 98, 2508-2517.	1.4	37
18	A glucagon analog chemically stabilized for immediate treatment of life-threatening hypoglycemia. Molecular Metabolism, 2014, 3, 293-300.	6.5	33

#	Article	IF	CITATIONS
19	Synthesis of Four-Disulfide Insulin Analogs via Sequential Disulfide Bond Formation. Journal of Organic Chemistry, 2017, 82, 3506-3512.	3.2	29
20	Charge inversion at position 68 of the glucagon and glucagonâ€like peptideâ€l receptors supports selectivity in hormone action. Journal of Peptide Science, 2011, 17, 218-225.	1.4	23
21	Biomimetic Synthesis of Insulin Enabled by Oxime Ligation and Traceless "C-Peptide―Chemical Excision. Organic Letters, 2017, 19, 706-709.	4.6	20
22	Optimization of peptide-based polyagonists for treatment of diabetes and obesity. Bioorganic and Medicinal Chemistry, 2018, 26, 2873-2881.	3.0	18
23	New virus-specific T-helper epitopes of foot-and-mouth disease viral VP1protein. FEBS Letters, 1993, 333, 175-178.	2.8	17
24	Functional association of the Nâ€terminal residues with the central region in glucagonâ€related peptides. Journal of Peptide Science, 2011, 17, 659-666.	1.4	16
25	Synthetic Route to Human Relaxin-2 via Iodine-Free Sequential Disulfide Bond Formation. Organic Letters, 2016, 18, 5516-5519.	4.6	16
26	Synthetic Advances in Insulin-like Peptides Enable Novel Bioactivity. Accounts of Chemical Research, 2017, 50, 1855-1865.	15.6	15
27	A hydrophobic site on the GLP-1 receptor extracellular domain orients the peptide ligand for signal transduction. Molecular Metabolism, 2013, 2, 86-91.	6.5	13
28	Synthesis of relaxinâ€2 and insulinâ€like peptide 5 enabled by novel tethering and traceless chemical excision. Journal of Peptide Science, 2017, 23, 455-465.	1.4	13
29	Optimization of Truncated Glucagon Peptides to Achieve Selective, High Potency, Full Antagonists. Journal of Medicinal Chemistry, 2021, 64, 4697-4708.	6.4	12
30	Pyridyl-alanine as a Hydrophilic, Aromatic Element in Peptide Structural Optimization. Journal of Medicinal Chemistry, 2016, 59, 8061-8067.	6.4	11
31	The islet-expressed Lhx1 transcription factor interacts with Islet-1 and contributes to glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E397-E409.	3.5	11
32	Addition of Sialic Acid to Insulin Confers Superior Physical Properties and Bioequivalence. Journal of Medicinal Chemistry, 2020, 63, 6134-6143.	6.4	11
33	Synthesis of disulfide-rich heterodimeric peptides through an auxiliary N, N-crosslink. Communications Chemistry, 2018, 1, .	4.5	10
34	A Disulfide Scan of Insulin by $[3+1]$ Methodology Exhibits Site-Specific Influence on Bioactivity. ACS Chemical Biology, 2019, 14, 1829-1835.	3.4	10
35	Insulin-like peptide 5 fails to improve metabolism or body weight in obese mice. Peptides, 2019, 120, 170116.	2.4	9
36	A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor. Molecular Metabolism, 2021, 53, 101316.	6.5	9

#	Article	IF	CITATIONS
37	High-Yield Synthesis of Human Insulin-Like Peptide 5 Employing a Nonconventional Strategy. Organic Letters, 2018, 20, 3695-3699.	4.6	8
38	Distinct actions of interleukin-9 and interleukin-4 on a hematopoietic stem cell line, EMLC1. Experimental Hematology, 1999, 27, 139-146.	0.4	7
39	Controlled intramolecular antagonism as a regulator of insulin receptor maximal activity. Peptides, 2018, 100, 18-23.	2.4	6
40	Efficacy of glucagon-like peptide-1 and estrogen dual agonist in pancreatic islets protection and pre-clinical models of insulin-deficient diabetes. Cell Reports Medicine, 2022, 3, 100598.	6.5	6
41	Discovery of High Potency, Single-Chain Insulin Analogs with a Shortened B-Chain and Nonpeptide Linker. ACS Chemical Biology, 2013, 8, 1822-1829.	3.4	5
42	Synthesis and Characterization of the R27S Genetic Variant of Insulinâ€like Peptide 5. ChemMedChem, 2018, 13, 852-859.	3.2	4
43	Synthesis and Biological Assessment of Insulin-Like Analogs with Differential Activity at the Insulin and IGF-1 Receptors. , 2006, , 229-234.		2
44	Threeâ \in chain insulin analogs demonstrate the importance of insulin secondary structure to bioactivity. Journal of Peptide Science, 2015, 21, 223-230.	1.4	1
45	Max Bergmann award lecture:Macromolecular medicinal chemistry as applied to metabolic diseases. Journal of Peptide Science, 2018, 24, e3056.	1.4	1
46	Structurally Constrained Insulin Analogs by Directed Stepwise Crosslinking. Protein and Peptide Letters, 2019, 25, 1149-1154.	0.9	0