James E Vince

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1036715/publications.pdf

Version: 2024-02-01

		218677	361022
37	4,912	26	35
papers	citations	h-index	g-index
37	37	37	6422
37	37	37	0722
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis. Cell, 2007, 131, 682-693.	28.9	993
2	RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nature Communications, 2015, 6, 6282.	12.8	514
3	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	28.9	492
4	Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity, 2012, 36, 215-227.	14.3	430
5	Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E961-E969.	7.1	337
6	TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. Journal of Cell Biology, 2008, 182, 171-184.	5.2	226
7	TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 35906-35915.	3.4	202
8	Mitochondrial apoptosis is dispensable for <scp>NLRP</scp> 3 inflammasome activation but nonâ€apoptotic caspaseâ€8 is required for inflammasome priming. EMBO Reports, 2014, 15, 982-990.	4.5	189
9	The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-1β Activation. Cell Reports, 2018, 25, 2339-2353.e4.	6.4	164
10	IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metabolism, 2016, 23, 155-164.	16.2	133
11	A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nature Communications, 2015, 6, 6442.	12.8	112
12	XIAP Loss Triggers RIPK3- and Caspase-8-Driven IL- $1\hat{1}^2$ Activation and Cell Death as a Consequence of TLR-MyD88-Induced cIAP1-TRAF2 Degradation. Cell Reports, 2017, 20, 668-682.	6.4	112
13	Caspaseâ€8: not so silently deadly. Clinical and Translational Immunology, 2017, 6, e124.	3.8	105
14	Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity, 2020, 53, 533-547.e7.	14.3	98
15	Ambiguities in NLRP3 inflammasome regulation: Is there a role for mitochondria?. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1433-1440.	2.4	94
16	Eliminating Legionella by inhibiting BCL-XL to induce macrophage apoptosis. Nature Microbiology, 2016, 1, 15034.	13.3	75
17	Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nature Communications, 2019, 10, 4190.	12.8	73
18	More to life than death: molecular determinants of necroptotic and non-necroptotic RIP3 kinase signaling. Current Opinion in Immunology, 2014, 26, 76-89.	5.5	71

#	Article	IF	Citations
19	The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Science Signaling, 2018, 11 , .	3.6	65
20	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	28.8	63
21	Interferon- \hat{I}^3 primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity, 2022, 55, 423-441.e9.	14.3	61
22	Activated MLKL attenuates autophagy following its translocation to intracellular membranes. Journal of Cell Science, 2019, 132, .	2.0	45
23	Combination of IAP antagonist and IFN \hat{I}^3 activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	11.2	43
24	The ubiquitylation of IL- $1\hat{1}^2$ limits its cleavage by caspase-1 and targets it for proteasomal degradation. Nature Communications, 2021, 12, 2713.	12.8	40
25	Inflammasomes and Cell Death: Common Pathways in Microparticle Diseases. Trends in Molecular Medicine, 2020, 26, 1003-1020.	6.7	36
26	Cutting Edge: Blockade of Inhibitor of Apoptosis Proteins Sensitizes Neutrophils to TNF- but Not Lipopolysaccharide-Mediated Cell Death and IL- $1\hat{l}^2$ Secretion. Journal of Immunology, 2018, 200, 3341-3346.	0.8	31
27	IAPs and Cell Death. Current Topics in Microbiology and Immunology, 2016, 403, 95-117.	1.1	28
28	No longer married to inflammasome signaling: the diverse interacting pathways leading to pyroptotic cell death. Biochemical Journal, 2022, 479, 1083-1102.	3.7	17
29	IRF-3 partners Bax in a viral-induced dance macabre. EMBO Journal, 2010, 29, 1627-1628.	7.8	15
30	Necroptotic movers and shakers: cell types, inflammatory drivers and diseases. Current Opinion in Immunology, 2021, 68, 83-97.	5.5	13
31	Ion Man: GSDMD Punches Pores to Knock Out cGAS. Immunity, 2018, 49, 379-381.	14.3	11
32	When Beauty Is Skin Deep: Regulation of the Wound Response by Caspase-8, RIPK3, and the Inflammasome. Journal of Investigative Dermatology, 2015, 135, 1936-1939.	0.7	8
33	Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins. PLoS ONE, 2016, 11, e0164003.	2.5	8
34	Response to Heard etÂal. EMBO Journal, 2015, 34, 2396-2397.	7.8	5
35	Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. IScience, 2022, 25, 104632.	4.1	3
36	Simultaneous Detection of Cellular Viability and Interleukin-1Î ² Secretion from Single Cells by ELISpot. Methods in Molecular Biology, 2018, 1714, 229-236.	0.9	0

#	Article	IF	CITATIONS
37	Receptor interacting protein kinases in cell death and inflammatory signalling. Seminars in Cell and Developmental Biology, 2021, 109, 68-69.	5.0	0