
Tara G Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1036586/publications.pdf Version: 2024-02-01

TADA C. MADTIN

#	Article	IF	CITATIONS
1	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
2	The broad footprint of climate change from genes to biomes to people. Science, 2016, 354, .	12.6	883
3	Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5, 215-224.	18.8	856
4	Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters, 2005, 8, 1235-1246.	6.4	712
5	Eliciting Expert Knowledge in Conservation Science. Conservation Biology, 2012, 26, 29-38.	4.7	591
6	Interactions between climate and habitat loss effects on biodiversity: a systematic review and metaâ€analysis. Global Change Biology, 2012, 18, 1239-1252.	9.5	519
7	Realising the full potential of citizen science monitoring programs. Biological Conservation, 2013, 165, 128-138.	4.1	441
8	Conserving mobile species. Frontiers in Ecology and the Environment, 2014, 12, 395-402.	4.0	371
9	A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecology Letters, 2010, 13, 900-914.	6.4	339
10	Optimal Conservation of Migratory Species. PLoS ONE, 2007, 2, e751.	2.5	292
11	Acting fast helps avoid extinction. Conservation Letters, 2012, 5, 274-280.	5.7	279
12	Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e551.	8.1	255
13	Unravelling the annual cycle in a migratory animal: breedingâ€season habitat loss drives population declines of monarch butterflies. Journal of Animal Ecology, 2015, 84, 155-165.	2.8	226
14	Monitoring does not always count. Trends in Ecology and Evolution, 2010, 25, 547-550.	8.7	220
15	Uncertainty and adaptive management for biodiversity conservation. Biological Conservation, 2011, 144, 1175-1178.	4.1	203
16	Climate change modifies risk of global biodiversity loss due to land-cover change. Biological Conservation, 2015, 187, 103-111.	4.1	189
17	THE POWER OF EXPERT OPINION IN ECOLOGICAL MODELS USING BAYESIAN METHODS: IMPACT OF GRAZING ON BIRDS. , 2005, 15, 266-280.		181
18	General rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8323-8328.	7.1	177

#	Article	IF	CITATIONS
19	Understanding and predicting the combined effects of climate change and landâ€use change on freshwater macroinvertebrates and fish. Journal of Applied Ecology, 2014, 51, 572-581.	4.0	157
20	Prioritizing threat management for biodiversity conservation. Conservation Letters, 2012, 5, 196-204.	5.7	156
21	Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131087.	2.6	146
22	Modeling abundance using <i>N</i> â€mixture models: the importance of considering ecological mechanisms. Ecological Applications, 2009, 19, 631-642.	3.8	136
23	The relative importance of cattle grazing in subtropical grasslands: does it reduce or enhance plant biodiversity?. Journal of Applied Ecology, 2003, 40, 445-457.	4.0	127
24	Intact ecosystems provide best defence against climate change. Nature Climate Change, 2016, 6, 122-124.	18.8	126
25	Integrating plant―and animalâ€based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 37-45.	4.0	126
26	Optimal timing for managed relocation of species faced with climate change. Nature Climate Change, 2011, 1, 261-265.	18.8	125
27	Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change. Biological Conservation, 2013, 157, 172-177.	4.1	118
28	Predicting the impact of livestock grazing on birds using foraging height data. Journal of Applied Ecology, 2005, 42, 400-408.	4.0	113
29	Impacts of Livestock Grazing and Tree Clearing on Birds of Woodland and Riparian Habitats. Conservation Biology, 2007, 21, 504-514.	4.7	100
30	Is landscape context important for riparian conservation? Birds in grassy woodland. Biological Conservation, 2006, 127, 201-214.	4.1	87
31	New pasture plants intensify invasive species risk. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16622-16627.	7.1	85
32	Browsing down our natural heritage: Deer impacts on vegetation structure and songbird populations across an island archipelago. Biological Conservation, 2011, 144, 459-469.	4.1	79
33	Assessing the impacts of grazing levels on bird density in woodland habitat: a Bayesian approach using expert opinion. Environmetrics, 2005, 16, 717-747.	1.4	74
34	Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environmental Science and Policy, 2015, 50, 114-129.	4.9	74
35	Benefits of integrating complementarity into priority threat management. Conservation Biology, 2015, 29, 525-536.	4.7	68
36	Current practices in the identification of critical habitat for threatened species. Conservation Biology, 2015, 29, 482-492.	4.7	68

#	Article	IF	CITATIONS
37	Priority Threat Management for biodiversity conservation: A handbook. Journal of Applied Ecology, 2019, 56, 481-490.	4.0	68
38	Supporting wild pollinators in a temperate agricultural landscape: Maintaining mosaics of natural features and production. Biological Conservation, 2012, 149, 84-92.	4.1	66
39	Prioritizing recovery funding to maximize conservation of endangered species. Conservation Letters, 2018, 11, e12604.	5.7	61
40	Biophysical and human influences on plant species richness in grasslands: Comparing variegated landscapes in subtropical and temperate regions. Austral Ecology, 2001, 26, 233-245.	1.5	54
41	Bats in a Farming Landscape Benefit from Linear Remnants and Unimproved Pastures. PLoS ONE, 2012, 7, e48201.	2.5	50
42	Translocation of imperiled species under changing climates. Annals of the New York Academy of Sciences, 2013, 1286, 15-28.	3.8	50
43	Growing biodiverse carbonâ€rich forests. Global Change Biology, 2014, 20, 382-393.	9.5	49
44	Comparison of three expert elicitation methods for logistic regression on predicting the presence of the threatened brushâ€tailed rockâ€wallaby <i>Petrogale penicillata</i> . Environmetrics, 2009, 20, 379-398.	1.4	47
45	Setting Realistic Recovery Targets for Two Interacting Endangered Species, Sea Otter and Northern Abalone. Conservation Biology, 2012, 26, 1016-1025.	4.7	46
46	Prioritizing management actions for the conservation of freshwater biodiversity under changing climate and land-cover. Biological Conservation, 2016, 197, 80-89.	4.1	46
47	An introduction to decision science for conservation. Conservation Biology, 2022, 36, .	4.7	45
48	Buffel grass and climate change: a framework for projecting invasive species distributions when data are scarce. Biological Invasions, 2015, 17, 3197-3210.	2.4	44
49	Priority threat management of invasive animals to protect biodiversity under climate change. Global Change Biology, 2015, 21, 3917-3930.	9.5	42
50	Plant traits predict impact of invading species: an analysis of herbaceous vegetation in the subtropics. Australian Journal of Botany, 2005, 53, 757.	0.6	41
51	Experimental Examination of Intraspecific Density-Dependent Competition during the Breeding Period in Monarch Butterflies (Danaus plexippus). PLoS ONE, 2012, 7, e45080.	2.5	41
52	How to Decide Whether to Move Species Threatened by Climate Change. PLoS ONE, 2013, 8, e75814.	2.5	40
53	Effect of Planning for Connectivity on Linear Reserve Networks. Conservation Biology, 2013, 27, 796-807.	4.7	38
54	Priority threat management of nonâ€native plants to maintain ecosystem integrity across heterogeneous landscapes. Journal of Applied Ecology, 2015, 52, 1135-1144.	4.0	38

#	Article	IF	CITATIONS
55	Regional forcing explains local species diversity and turnover on tropical islands. Global Ecology and Biogeography, 2018, 27, 474-486.	5.8	38
56	Timing of Protection of Critical Habitat Matters. Conservation Letters, 2017, 10, 308-316.	5.7	37
57	Weeds of Australian rangelands. Rangeland Journal, 2006, 28, 3.	0.9	35
58	Is Australia ready for assisted colonization? Policy changes required to facilitate translocations under climate change Pacific Conservation Biology, 2011, 17, 259.	1.0	33
59	Simple rules to contain an invasive species with a complex life cycle and high dispersal capacity. Journal of Applied Ecology, 2012, 49, 52-62.	4.0	32
60	Contribution of tree species to the biodiversity of a 1ha Old World rainforest in Brunei, Borneo. Biodiversity and Conservation, 2004, 13, 2067-2088.	2.6	30
61	Bird foraging height predicts bird species response to woody vegetation change. Biodiversity and Conservation, 2010, 19, 2247-2262.	2.6	30
62	Subsidizing extinction?. Conservation Letters, 2020, 13, e12705.	5.7	29
63	The effects of including marine ecological values in terrestrial reserve planning for a forest-nesting seabird. Biological Conservation, 2010, 143, 1299-1303.	4.1	27
64	Managing intensive and extensive land uses to conserve grassland plants in sub-tropical eucalypt woodlands. Biological Conservation, 2002, 107, 241-252.	4.1	26
65	A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agricultural Systems, 2014, 125, 1-11.	6.1	26
66	Deer density and plant palatability predict shrub cover, richness, diversity and aboriginal food value in a <scp>N</scp> orth <scp>A</scp> merican archipelago. Diversity and Distributions, 2014, 20, 1368-1378.	4.1	25
67	Prioritizing conservation actions for Pacific salmon in Canada. Journal of Applied Ecology, 2020, 57, 1688-1699.	4.0	23
68	Australia's Stock Route Network: 1. A review of its values and implications for future management. Ecological Management and Restoration, 2011, 12, 119-127.	1.5	22
69	Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. Royal Society Open Science, 2015, 2, 150107.	2.4	22
70	Spatial Priorities for Restoring Biodiverse Carbon Forests. BioScience, 2015, 65, 372-382.	4.9	22
71	Protecting biodiversity in British Columbia: Recommendations for developing species at risk legislation. Facets, 2019, 4, 136-160.	2.4	21
72	Biodiverse Planting for Carbon and Biodiversity on Indigenous Land. PLoS ONE, 2014, 9, e91281.	2.5	20

#	Article	IF	CITATIONS
73	Value of large-scale linear networks for bird conservation: A case study from travelling stock routes, Australia. Agriculture, Ecosystems and Environment, 2011, 141, 302-309.	5.3	17
74	Value for money? Investment in weed management in Australian rangelands. Rangeland Journal, 2006, 28, 63.	0.9	15
75	Voting Systems for Environmental Decisions. Conservation Biology, 2014, 28, 322-332.	4.7	15
76	Should we implement monitoring or research for conservation?. Trends in Ecology and Evolution, 2011, 26, 108-109.	8.7	14
77	Tax Shifting and Incentives for Biodiversity Conservation on Private Lands. Conservation Letters, 2018, 11, e12377.	5.7	14
78	Do fragmented coastal heathlands have habitat value to birds in eastern Australia?. Wildlife Research, 2001, 28, 17.	1.4	13
79	Accounting for direct and indirect cumulative effects of anthropogenic pressures on salmon- and herring-linked land and ocean ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210130.	4.0	13
80	Whose backyard? Some precautions in choosing recipient sites for assisted colonisation of <scp>A</scp> ustralian plants and animals. Ecological Management and Restoration, 2013, 14, 106-111.	1.5	12
81	Foraging height and landscape context predict the relative abundance of bird species in urban vegetation patches. Austral Ecology, 2011, 36, 944-953.	1.5	11
82	Assessing rarity and threat in an arid-zone flora. Australian Journal of Botany, 2011, 59, 336.	0.6	10
83	Chinook salmon exhibit long-term rearing and early marine growth in the Fraser River, British Columbia, a large urban estuary. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 539-550.	1.4	10
84	Quantifying lost and inaccessible habitat for Pacific salmon in Canada's Lower Fraser River. Ecosphere, 2021, 12, e03646.	2.2	10
85	Prior information reduces uncertainty about the consequences of deer overabundance on forest birds. Biological Conservation, 2013, 165, 10-17.	4.1	9
86	Conservation in heavily urbanized biodiverse regions requires urgent management action and attention to governance. Conservation Science and Practice, 2021, 3, e310.	2.0	9
87	Determining When to Change Course in Management Actions. Conservation Biology, 2014, 28, 1617-1625.	4.7	8
88	It is time to overcome unconscious bias in ecology. Nature Ecology and Evolution, 2018, 2, 201-201.	7.8	8
89	Non-native earthworms alter the assembly of a meadow plant community. Biological Invasions, 2021, 23, 2407-2415.	2.4	8
90	Australia's Stock Route Network: 2. Representation of fertile landscapes. Ecological Management and Restoration, 2011, 12, 148-151.	1.5	7

#	Article	IF	CITATIONS
91	Bird Community Conservation and Carbon Offsets in Western North America. PLoS ONE, 2014, 9, e99292.	2.5	7
92	Guest Editorial: Rangelands, weeds and biodiversity. Rangeland Journal, 2006, 28, 1.	0.9	6
93	Building a stakeholder-led common vision increases the expected cost-effectiveness of biodiversity conservation. PLoS ONE, 2019, 14, e0218093.	2.5	6
94	Australian birds in a changing landscape: 220 years of European colonisation. , 2012, , 453-480.		5
95	How to choose a costâ€effective indicator to trigger conservation decisions?. Methods in Ecology and Evolution, 2021, 12, 520-529.	5.2	5
96	Prioritizing threat management across terrestrial and freshwater realms for species conservation and recovery. Conservation Science and Practice, 2021, 3, e300.	2.0	5
97	Hasten end of dated fossil-fuel subsidies. Nature, 2016, 538, 171-171.	27.8	3
98	Identifying a pathway towards recovery for depleted wild Pacific salmon populations in a large watershed under multiple stressors. Journal of Applied Ecology, 2022, 59, 2212-2226.	4.0	3
99	Reply to Proença et al.: Sown biodiverse pastures are not a universal solution to invasion risk. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1696.	7.1	1
100	Management of weeds in Australian rangelands: a basis for evaluating projects. Rangeland Journal, 2006, 28, 77.	0.9	1
101	Predicting the optimal amount of time to spend learning before designating protected habitat for threatened species. Methods in Ecology and Evolution, 2022, 13, 722-733.	5.2	1