Takahiro Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1036150/publications.pdf Version: 2024-02-01

Τλκλμιρο Ιτο

#	Article	IF	CITATIONS
1	Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature, 2010, 466, 765-768.	27.8	315
2	Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature, 2017, 545, 500-504.	27.8	287
3	Prolonged Correction of Serum Phosphorus in Adults With X-Linked Hypophosphatemia Using Monthly Doses of KRN23. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2565-2573.	3.6	141
4	Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche. Cell Reports, 2012, 2, 964-975.	6.4	129
5	Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature, 2016, 534, 407-411.	27.8	114
6	Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nature Genetics, 2014, 46, 245-252.	21.4	97
7	Loss of \hat{l}^2 -catenin triggers oxidative stress and impairs hematopoietic regeneration. Genes and Development, 2014, 28, 995-1004.	5.9	69
8	Tetraspanin 3 Is Required for the Development and Propagation of Acute Myelogenous Leukemia. Cell Stem Cell, 2015, 17, 152-164.	11.1	58
9	β-Arrestin2 mediates the initiation and progression of myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12532-12537.	7.1	53
10	Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast. Genes To Cells, 2007, 12, 547-559.	1.2	48
11	Continuous in vivo Metabolism by NMR. Frontiers in Molecular Biosciences, 2019, 6, 26.	3.5	41
12	Transcription elongation factor S-II maintains transcriptional fidelity and confers oxidative stress resistance. Genes To Cells, 2003, 8, 779-788.	1.2	36
13	Transcription Elongation Factor S-II Is Required for Definitive Hematopoiesis. Molecular and Cellular Biology, 2006, 26, 3194-3203.	2.3	33
14	High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo. Nature Communications, 2016, 7, 12169.	12.8	27
15	Spermatocyte-specific expression of the gene for mouse testis-specific transcription elongation factor S-II. FEBS Letters, 1996, 385, 21-24.	2.8	24
16	Direct interaction between metastasis-associated protein 1 and endophilin 3. FEBS Letters, 2005, 579, 3731-3736.	2.8	22
17	Regulation of Stem Cell Self-Renewal and Oncogenesis by RNA-Binding Proteins. Advances in Experimental Medicine and Biology, 2016, 907, 153-188.	1.6	19
18	Impact of Rifaximin Therapy on Ischemia/Reperfusion Injury in Liver Transplantation: A Propensity Score–Matched Analysis. Liver Transplantation, 2019, 25, 1778-1789.	2.4	19

Τακαμιγό Ιτο

#	Article	IF	CITATIONS
19	RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leukemia Research, 2017, 54, 47-54.	0.8	18
20	The CD44/COL17A1 pathway promotes the formation of multilayered, transformed epithelia. Current Biology, 2021, 31, 3086-3097.e7.	3.9	18
21	Transcriptional repression of the <i>IMD2</i> gene mediated by the transcriptional coâ€activator Sub1. Genes To Cells, 2008, 13, 1113-1126.	1.2	17
22	RGC-32 is expressed in the human atherosclerotic arterial wall: Role in C5b-9-induced cell proliferation and migration. Experimental and Molecular Pathology, 2016, 101, 221-230.	2.1	17
23	Antioxidant N-acetyl-l-cysteine inhibits erythropoietin-induced differentiation of erythroid progenitors derived from mouse fetal liver. Cell Biology International, 2007, 31, 252-256.	3.0	15
24	Stem cell maintenance and disease progression in chronic myeloid leukemia. International Journal of Hematology, 2013, 98, 641-647.	1.6	15
25	GRIP1Ï,,, a novel PDZ domain-containing transcriptional activator, cooperates with the testis-specific transcription elongation factor SII-T1. Genes To Cells, 2004, 9, 1125-1135.	1.2	14
26	Participation of Rho-dependent transcription termination in oxidative stress sensitivity caused by an rpoB mutation. Genes To Cells, 2005, 10, 477-487.	1.2	13
27	Novel RNA polymerase II mutation suppresses transcriptional fidelity and oxidative stress sensitivity in <i>rpb9Δ</i> yeast. Genes To Cells, 2010, 15, 151-159.	1.2	12
28	aSIRTing Control over Cancer Stem Cells. Cancer Cell, 2012, 21, 140-142.	16.8	12
29	Analysis of intracellular α-keto acids by HPLC with fluorescence detection. Analytical Methods, 2020, 12, 2555-2559.	2.7	11
30	A stem cell reporter based platform to identify and target drug resistant stem cells in myeloid leukemia. Nature Communications, 2020, 11, 5998.	12.8	8
31	Identification of a Novel Tissue-Specific Transcriptional Activator FESTA as a Protein That Interacts with the Transcription Elongation Factor S-II. Journal of Biochemistry, 2003, 133, 493-500.	1.7	7
32	Transcription arrest relief by Sâ€II/TFIIS during gene expression in erythroblast differentiation. Genes To Cells, 2009, 14, 371-380.	1.2	6
33	Liver Transplantation in Patients With Pretransplant Aspergillus Colonization: Is It Safe to Proceed?. Transplantation, 2021, 105, 586-592.	1.0	6
34	Gene structure and chromosome mapping of mouse transcription elongation factor S-II (Tcea1). Gene, 2000, 244, 55-63.	2.2	5
35	Improved method for the PCR-based gene disruption in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2008, 8, 193-194.	2.3	5
36	Engineering a BCR-ABL–activated caspase for the selective elimination of leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2300-2305.	7.1	5

Τακαμιγό Ιτο

#	Article	IF	CITATIONS
37	Analysis of Branched-Chain Keto Acids in Cell Extracts by HPLC-Fluorescence Detection. Chromatography, 2017, 38, 129-133.	1.7	5
38	Defective FESTA/EAF2-mediated transcriptional activation in S-II-deficient embryonic stem cells. Biochemical and Biophysical Research Communications, 2007, 363, 603-609.	2.1	4
39	Determination of intracellular 2-hydroxyglutarate enantiomers using two-dimensional liquid chromatography. Journal of Chromatography Open, 2021, 1, 100005.	2.2	3
40	Identification of Syndecan-1 As a Key Dependency of Myeloid Leukemia Growth and Dissemination. Blood, 2018, 132, 3003-3003.	1.4	3
41	Immunoglobulin superfamily member 8 maintains myeloid leukemia stem cells through inhibition of β-catenin degradation. Leukemia, 2022, 36, 1550-1562.	7.2	3
42	Gene organization and chromosome mapping of the testis-specific S-II. Mammalian Genome, 1998, 9, 915-917.	2.2	2
43	Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche. Cell Reports, 2012, 2, 1774.	6.4	1
44	Role of amino acid metabolism in cancer progression. Experimental Hematology, 2016, 44, S78.	0.4	1
45	Amino acid metabolism in myeloid leukemia. Experimental Hematology, 2015, 43, S66.	0.4	Ο
46	Reprogramming cell fates by RNA binding proteins in stem cells and cancer. FASEB Journal, 2021, 35, .	0.5	0
47	Immunoglobulin Superfamily Member 8 Is Indispensable for Myeloid Leukemia Via Wnt/β-Catenin Signaling Pathway. Blood, 2020, 136, 23-24.	1.4	0