

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1035845/publications.pdf Version: 2024-02-01

يا ميا

#	Article	IF	CITATIONS
1	A sensor combination based automatic sorting system for waste washing machine parts. Resources, Conservation and Recycling, 2022, 181, 106270.	10.8	9
2	Classification of Common Household Plastic Wastes Combining Multiple Methods Based on Near-Infrared Spectroscopy. ACS ES&T Engineering, 2021, 1, 1065-1073.	7.6	27
3	Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge. ACS ES&T Engineering, 2021, 1, 1369-1382.	7.6	96
4	Particle trajectory model for tribo-electrostatic separating mixed granular plastics. Cleaner Engineering and Technology, 2021, 4, 100219.	4.0	1
5	Recover lithium and prepare nano-cobalt from spent lithium ion batteries using a one-pot mechanochemical reaction. Cleaner Engineering and Technology, 2021, 5, 100282.	4.0	0
6	Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives. Environmental Science & Technology, 2020, 54, 9-25.	10.0	192
7	An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. Journal of Cleaner Production, 2020, 245, 118820.	9.3	74
8	Auto-sorting commonly recovered plastics from waste household appliances and electronics using near-infrared spectroscopy. Journal of Cleaner Production, 2020, 246, 118732.	9.3	102
9	Environmentally-friendly technology for rapid on-line recycling of acrylonitrile-butadiene-styrene, polystyrene and polypropylene using near-infrared spectroscopy. Journal of Cleaner Production, 2019, 213, 838-844.	9.3	25
10	Compound tribo-electrostatic separation for recycling mixed plastic waste. Journal of Hazardous Materials, 2019, 367, 43-49.	12.4	22
11	Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries. Journal of Cleaner Production, 2018, 205, 923-929.	9.3	98
12	Charge-decay electrostatic separation for removing Polyvinyl chloride from mixed plastic wastes. Journal of Cleaner Production, 2017, 157, 148-154.	9.3	16
13	Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. Journal of Hazardous Materials, 2017, 338, 124-131.	12.4	257
14	Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environmental Science & Technology, 2017, 51, 11960-11966.	10.0	284
15	Eddy current separation technology for recycling printed circuit boards from crushed cell phones. Journal of Cleaner Production, 2017, 141, 1316-1323.	9.3	45
16	Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Management, 2016, 52, 221-227.	7.4	133
17	Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO 2 /graphite lithium batteries. Journal of Hazardous Materials, 2016, 302, 97-104.	12.4	405
18	Improved Overall Performances of a Tribo-Aero-Electrostatic Separator for Granular Plastics From Waste Electric and Electronic Equipment. IEEE Transactions on Industry Applications, 2015, 51, 4159-4165.	4.9	16

Jia Li

#	Article	IF	CITATIONS
19	Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation. Waste Management, 2015, 35, 36-41.	7.4	83
20	Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards. Waste Management and Research, 2014, 32, 1227-1234.	3.9	5
21	New Technology for Separating Resin Powder and Fiberglass Powder from Fiberglass–Resin Powder of Waste Printed Circuit Boards. Environmental Science & Technology, 2014, 48, 5171-5178.	10.0	30
22	Tribo-aero-electrostatic separator for coarse granular insulating materials. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 1510-1515.	2.9	27
23	Physical model of granule adhesion to the belt-electrodes of a tribo-aero-electrostatic separator. Journal of Physics: Conference Series, 2013, 418, 012073.	0.4	1
24	Numerical modeling of the trajectories of plastic granules in a tribo-aero-electrostatic separator. Journal of Electrostatics, 2013, 71, 281-286.	1.9	15
25	Triboelectrostatic separation for granular plastic waste recycling: A review. Waste Management, 2013, 33, 585-597.	7.4	179
26	Management strategies on the industrialization road of state-of- the-art technologies for e-waste recycling: the case study of electrostatic separation—a review. Waste Management and Research, 2013, 31, 130-140.	3.9	26
27	Newly-Patented Technical Solutions for improving the Tribo-Electrostatic Separation of Mixed Granular Solids. Recent Patents on Engineering, 2012, 6, 104-115.	0.4	14
28	Environmental Friendly Crush-Magnetic Separation Technology for Recycling Metal-Plated Plastics from End-of-Life Vehicles. Environmental Science & Technology, 2012, 46, 2661-2667.	10.0	23
29	Electrostatic Separation for Recycling Conductors, Semiconductors, and Nonconductors from Electronic Waste. Environmental Science & amp; Technology, 2012, 46, 10556-10563.	10.0	39
30	An environmental friendly recovery production line of waste toner cartridges. Journal of Hazardous Materials, 2011, 185, 696-702.	12.4	60
31	Enhancement of the recycling of waste Ni–Cd and Ni–MH batteries by mechanical treatment. Waste Management, 2011, 31, 1292-1299.	7.4	52
32	Characterization and recycling of cadmium from waste nickel–cadmium batteries. Waste Management, 2010, 30, 2292-2298.	7.4	51
33	Environmental Friendly Automatic Line for Recovering Metal from Waste Printed Circuit Boards. Environmental Science & Technology, 2010, 44, 1418-1423.	10.0	112
34	Dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields. Science in China Series D: Earth Sciences, 2009, 52, 2359-2366.	0.9	5
35	A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board. Journal of Hazardous Materials, 2009, 161, 257-262.	12.4	75
36	An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE. Journal of Hazardous Materials, 2009, 167, 489-493.	12.4	18

Jia Li

#	Article	IF	CITATIONS
37	A Novel Process for Recovering Valuable Metals from Waste Nickelâ^'Cadmium Batteries. Environmental Science & Technology, 2009, 43, 8974-8978.	10.0	73
38	Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board. Journal of Materials Processing Technology, 2008, 197, 101-108.	6.3	55
39	A model for computing the trajectories of the conducting particles from waste printed circuit boards in corona electrostatic separators. Journal of Hazardous Materials, 2008, 151, 52-57.	12.4	28
40	Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field. Journal of Hazardous Materials, 2008, 153, 269-275.	12.4	69
41	Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator. Journal of Hazardous Materials, 2008, 153, 1308-1313.	12.4	21
42	Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards. Journal of Hazardous Materials, 2008, 154, 331-336.	12.4	27
43	Dynamics of spherical metallic particles in cylinder electrostatic separators/purifiers. Journal of Hazardous Materials, 2008, 156, 74-79.	12.4	5
44	Electrostatic separation for multi-size granule of crushed printed circuit board waste using two-roll separator. Journal of Hazardous Materials, 2008, 159, 230-234.	12.4	36
45	Electrostatic Separation for Recovering Metals and Nonmetals from Waste Printed Circuit Board: Problems and Improvements. Environmental Science & Technology, 2008, 42, 5272-5276.	10.0	90
46	Phenolic Molding Compound Filled with Nonmetals of Waste PCBs. Environmental Science & Technology, 2008, 42, 624-628.	10.0	69
47	Recycle Technology for Recovering Resources and Products from Waste Printed Circuit Boards. Environmental Science & Technology, 2007, 41, 1995-2000.	10.0	403
48	Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards. Journal of Electrostatics, 2007, 65, 233-238.	1.9	135