Douglas S Glazier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1035735/publications.pdf Version: 2024-02-01

DOUCLAS S CLAZIER

#	Article	IF	CITATIONS
1	Beyond the â€~3/4â€power law': variation in the intraâ€and interspecific scaling of metabolic rate in animals. Biological Reviews, 2005, 80, 611-662.	10.4	816
2	The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecology Letters, 2010, 13, 184-193.	6.4	341
3	A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews, 2010, 85, 111-138.	10.4	321
4	ls metabolic rate a universal â€~pacemaker' for biological processes?. Biological Reviews, 2015, 90, 377-407.	10.4	249
5	Effects of Food, Genotype, and Maternal Size and Age on Offspring Investment in Daphnia Magna. Ecology, 1992, 73, 910-926.	3.2	193
6	Ecological Influences and Morphological Correlates of Resting and Maximal Metabolic Rates across Teleost Fish Species. American Naturalist, 2016, 187, 592-606.	2.1	188
7	The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals. BioScience, 2006, 56, 325.	4.9	166
8	Metabolic Scaling in Complex Living Systems. Systems, 2014, 2, 451-540.	2.3	140
9	Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1405-1410.	2.6	130
10	Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 821-828.	1.5	101
11	Energy allocation rules inDaphnia magna: clonal and age differences in the effects of food limitation. Oecologia, 1992, 90, 540-549.	2.0	97
12	Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling. Ecology Letters, 2014, 17, 1274-1281.	6.4	88
13	Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evolutionary Ecology, 1999, 13, 539-555.	1.2	86
14	Ecological effects on metabolic scaling: amphipod responses to fish predators in freshwater springs. Ecological Monographs, 2011, 81, 599-618.	5.4	83
15	ls fatter fitter? Body storage and reproduction in ten populations of the freshwater amphipod Gammarus minus. Oecologia, 2000, 122, 335-345.	2.0	74
16	Scaling of Metabolic Scaling within Physical Limits. Systems, 2014, 2, 425-450.	2.3	66
17	Log-transformation is useful for examining proportional relationships in allometric scaling. Journal of Theoretical Biology, 2013, 334, 200-203.	1.7	65
18	Separating the respiration rates of embryos and brooding females of Daphnia magna: Implications for the cost of brooding and the allometry of metabolic rate. Limnology and Oceanography, 1991, 36, 354-361.	3.1	63

DOUGLAS S GLAZIER

#	Article	IF	CITATIONS
19	Relationship between metabolic rate and energy expenditure for lactation in Peromyscus. Comparative Biochemistry and Physiology A, Comparative Physiology, 1985, 80, 587-590.	0.6	55
20	Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Functional Ecology, 2009, 23, 963-968.	3.6	54
21	Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142302.	2.6	52
22	Rediscovering and Reviving Old Observations and Explanations of Metabolic Scaling in Living Systems. Systems, 2018, 6, 4.	2.3	52
23	Macroinvertebrate assemblages in Pennsylvania (U.S.A.) springs. Hydrobiologia, 1987, 150, 33-43.	2.0	51
24	TEMPORAL AND SPATIAL PATTERNS IN MID-APPALACHIAN SPRINGS. Memoirs of the Entomological Society of Canada, 1991, 123, 29-49.	0.5	43
25	Abundance, body composition and reproductive output of Gammarus minus (Crustacea: Amphipoda) in ten cold springs differing in pH and ionic content. Freshwater Biology, 1992, 28, 149-163.	2.4	38
26	Body-Mass Scaling of Metabolic Rate: What are the Relative Roles of Cellular versus Systemic Effects?. Biology, 2015, 4, 187-199.	2.8	38
27	Urgent plea for global protection of springs. Conservation Biology, 2021, 35, 378-382.	4.7	38
28	Ontogenetic body-mass scaling of resting metabolic rate covaries with species-specific metabolic level and body size in spiders and snakes. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 403-407.	1.8	35
29	RESOURCE-ALLOCATION RULES AND THE HERITABILITY OF TRAITS. Evolution; International Journal of Organic Evolution, 2002, 56, 1696-1700.	2.3	34
30	Smaller amphipod mothers show stronger trade-offs between offspring size and number. Ecology Letters, 2000, 3, 142-149.	6.4	33
31	Activity alters how temperature influences intraspecific metabolic scaling: testing the metabolic-level boundaries hypothesis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2020, 190, 445-454.	1.5	32
32	Toward a predictive theory of speciation: The ecology of isolate selection. Journal of Theoretical Biology, 1987, 126, 323-333.	1.7	31
33	Biological scaling analyses are more than statistical line fitting. Journal of Experimental Biology, 2021, 224, .	1.7	30
34	Variation in offspring investment within and among populations of Gammarus minus SAY (Crustacea:) Tj ETQq0 257-283.	0 0 rgBT / 0.7	Overlock 10 T 30
35	The amphipod Gammarus minus has larger eyes in freshwater springs with numerous fish predators. Invertebrate Biology, 2011, 130, 60-67.	0.9	29
36	Does body storage act as a foodâ€availability cue for adaptive adjustment of egg size and number in Daphnia magna ?. Freshwater Biology, 1998, 40, 87-92.	2.4	27

DOUGLAS S GLAZIER

#	Article	IF	CITATIONS
37	Temperature affects food-chain length and macroinvertebrate species richness in spring ecosystems. Freshwater Science, 2012, 31, 575-585.	1.8	27
38	Ecological pressures and the contrasting scaling of metabolism and body shape in coexisting taxa: cephalopods versus teleost fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180543.	4.0	27
39	Effects of Fish Predators on the Mass-Related Energetics of a Keystone Freshwater Crustacean. Biology, 2020, 9, 40.	2.8	25
40	Competitive ability, body size and geographical range size in small mammals. Journal of Biogeography, 2002, 29, 81-92.	3.0	24
41	Effects of Contingency versus Constraints on the Body-Mass Scaling of Metabolic Rate. Challenges, 2018, 9, 4.	1.7	23
42	Energetics and Taxonomic Patterns of Species Diversity. Systematic Zoology, 1987, 36, 62.	1.6	19
43	Asymmetric geographic range expansion explains the latitudinal diversity gradients of four major taxa of marine plankton. Paleobiology, 2017, 43, 196-208.	2.0	19
44	Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. Journal of Experimental Biology, 2020, 223, .	1.7	19
45	Temperature and predator cues interactively affect ontogenetic metabolic scaling of aquatic amphipods. Biology Letters, 2020, 16, 20200267.	2.3	18
46	How can habitat size influence leaf litter decomposition in five mid-Appalachian springs (USA)? The importance of the structure of the detritivorous guild. Hydrobiologia, 2010, 654, 227-236.	2.0	17
47	Ecology of ontogenetic body-mass scaling of gill surface area in a freshwater crustacean. Journal of Experimental Biology, 2017, 220, 2120-2127.	1.7	17
48	Body-size scaling of metabolic rate in the trilobite <i>Eldredgeops rana</i> . Paleobiology, 2013, 39, 109-122.	2.0	16
49	Complications with body-size correction in comparative biology: possible solutions and an appeal for new approaches. Journal of Experimental Biology, 2022, 225, .	1.7	16
50	Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. Biology, 2021, 10, 270.	2.8	15
51	High metabolic and water-loss rates in caterpillar aggregations: evidence against the resource-conservation hypothesis. Journal of Experimental Biology, 2013, 216, 4321-5.	1.7	13
52	Resource Supply and Demand Both Affect Metabolic Scaling: A Response to Harrison. Trends in Ecology and Evolution, 2018, 33, 237-238.	8.7	13
53	Persistently high levels of intersexuality in male-biased amphipod populations. Zoology, 2008, 111, 401-409.	1.2	11
54	Sexual dimorphism and physiological correlates of horn length in a South African isopod crustacean. Journal of Zoology, 2016, 300, 99-110.	1.7	9

DOUGLAS S GLAZIER

#	Article	IF	CITATIONS
55	A Perspective on Body Size and Abundance Relationships across Ecological Communities. Biology, 2020, 9, 42.	2.8	8
56	Reproductive Efficiency and the Timing of Gestation and Lactation in Rodents. American Naturalist, 1990, 135, 269-277.	2.1	7
57	A quantitative genetics perspective on the body-mass scaling of metabolic rate. Journal of Experimental Biology, 2022, 225, .	1.7	5
58	Similar offspring production by normal and intersex females in two populations of Gammarus minus (Malacostraca, Amphipoda) with high levels of intersexuality. Crustaceana, 2012, 85, 801-815.	0.3	4
59	Commentary: On the Interpretation of the Normalization Constant in the Scaling Equation. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	4
60	Arboreal Herbivory by a Semi-Terrestrial South African Isopod Crustacean, <i>Tylos capensis</i> Krauss (Isopoda: Tylidae), on the Bietou Bush, <i>Chrysanthemoides monilifera</i> (L.) Norlindh. African Invertebrates, 2015, 56, 729-738.	0.5	2
61	Clutch Mass, Offspring Mass, and Clutch Size: Body Mass Scaling and Taxonomic and Environmental Variation. , 2018, , 68-97.		2
62	Global Patterns of Ecological Efficiency at the Biome-Level. Oikos, 1991, 61, 439.	2.7	1