Gili Regev-Yochay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1035413/publications.pdf

Version: 2024-02-01

90 papers 7,725 citations

35 h-index 80 g-index

98 all docs 98 docs citations 98 times ranked 10838 citing authors

#	Article	IF	CITATIONS
1	Dynamics of Invasive Pneumococcal Disease in Israel in Children and Adults in the 13-Valent Pneumococcal Conjugate Vaccine (PCV13) Era: A Nationwide Prospective Surveillance. Clinical Infectious Diseases, 2022, 74, 1639-1649.	5.8	14
2	Maternal-neonatal transfer of SARS-CoV-2 immunoglobulin G antibodies among parturient women treated with BNT162b2 messenger RNA vaccine during pregnancy. American Journal of Obstetrics & Synecology MFM, 2022, 4, 100492.	2.6	81
3	First reported nosocomial SARS-CoV-2 outbreak in a hospital-based laundry facility. Epidemiology and Infection, 2022, 150, 1-17.	2.1	3
4	Early Immunogenicity and Safety of the Third Dose of BNT162b2 Messenger RNA Coronavirus Disease 2019 Vaccine Among Adults Older Than 60 Years: Real-World Experience. Journal of Infectious Diseases, 2022, 225, 785-792.	4.0	38
5	Low rate of transmission to triple-vaccinated contacts of an imported case of SARS-CoV-2 omicron infection: a contact tracing study in Israel. Journal of Travel Medicine, 2022, 29, .	3.0	4
6	Third BNT162b2 Vaccination Neutralization of SARS-CoV-2 Omicron Infection. New England Journal of Medicine, 2022, 386, 492-494.	27.0	372
7	SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nature Reviews Immunology, 2022, 22, 57-65.	22.7	217
8	Real World Performance of SARS-CoV-2 Antigen Rapid Diagnostic Tests in Various Clinical Settings. Infection Control and Hospital Epidemiology, 2022, , 1-20.	1.8	7
9	Existence of immunological memory response in true sero-negative individuals post COVID-19 molecular diagnosis. Clinical Infectious Diseases, 2022, , .	5.8	2
10	Impact of BNT162b2 Vaccination and Isolation on SARS-CoV-2 Transmission in Israeli Households: An Observational Study. American Journal of Epidemiology, 2022, 191, 1224-1234.	3.4	37
11	Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. New England Journal of Medicine, 2022, 386, 1377-1380.	27.0	332
12	The Effect of Macrolides on Mortality in Bacteremic Pneumococcal Pneumonia: A Retrospective, Nationwide Cohort Study, Israel, 2009–2017. Clinical Infectious Diseases, 2022, 75, 2219-2224.	5.8	4
13	Seropositivity and neutralising antibodies at six months after BNT162b2 vaccination in patients with solid tumours. European Journal of Cancer, 2022, 168, 51-55.	2.8	5
14	Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunology, 2022, 15, 799-808.	6.0	152
15	Rapid Antigen Tests For Safe School Opening in the COVID-19 Pandemic Era. Pediatric Infectious Disease Journal, 2022, 41, e312-e317.	2.0	2
16	Superior immunogenicity and effectiveness of the third compared to the second BNT162b2 vaccine dose. Nature Immunology, 2022, 23, 940-946.	14.5	67
17	Serotype Patterns of Pneumococcal Disease in Adults Are Correlated With Carriage Patterns in Older Children. Clinical Infectious Diseases, 2021, 72, e768-e775.	5.8	10
18	Characteristics of Clinically Asymptomatic Patients with SARS-CoV-2 Infections, Case Series. Prehospital and Disaster Medicine, 2021, 36, 125-128.	1.3	7

#	Article	IF	CITATIONS
19	The Sheba Medical Center healthcare workers' children's school: can we open schools safely?. Clinical Microbiology and Infection, 2021, 27, 474.e1-474.e3.	6.0	5
20	Establishing a COVID-19 treatment centre in Israel at the initial stage of the outbreak: challenges, responses and lessons learned. Emergency Medicine Journal, 2021, 38, 373-378.	1.0	4
21	Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients. Lancet, The, 2021, 397, 875-877.	13.7	281
22	Fetal and Perinatal Outcome Following First and Second Trimester COVID-19 Infection: Evidence from a Prospective Cohort Study. Journal of Clinical Medicine, 2021, 10, 2152.	2.4	12
23	COVID-19 vaccine efficacy data: solid enough to delay second dose? – Authors' reply. Lancet, The, 2021, 397, 2249-2250.	13.7	0
24	Neutralising capacity against Delta (B.1.617.2) and other variants of concern following Comirnaty (BNT162b2, BioNTech/Pfizer) vaccination in health care workers, Israel. Eurosurveillance, 2021, 26, .	7.0	127
25	Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. New England Journal of Medicine, 2021, 385, 1474-1484.	27.0	1,162
26	Prevalence of Allergic Reactions After Pfizer-BioNTech COVID-19 Vaccination Among Adults With High Allergy Risk. JAMA Network Open, 2021, 4, e2122255.	5.9	64
27	Decreased infectivity following BNT162b2 vaccination: A prospective cohort study in Israel. Lancet Regional Health - Europe, The, 2021, 7, 100150.	5.6	101
28	Presence of SARS-CoV-2 antibodies in lactating women and their infants following BNT162b2 messenger RNA vaccine. American Journal of Obstetrics and Gynecology, 2021, 225, 577-579.	1.3	16
29	Mobile phones and respiratory viral infections. Journal of Infectious Diseases, 2021, , .	4.0	0
30	BNT162b2 COVID-19 vaccine and correlates of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort study in health-care workers. Lancet Respiratory Medicine, the, 2021, 9, 999-1009.	10.7	279
31	COVID-19 Vaccination uptake among Health Care Workers. Infection Control and Hospital Epidemiology, 2021, , 1-22.	1.8	11
32	Efficacy and safety of BNT162b2 vaccination inÂpatients with solid cancer receiving anticancer therapy – a single centre prospective study. European Journal of Cancer, 2021, 157, 124-131.	2.8	39
33	SARS-CoV-2 outbreak in a synagogue community: longevity and strength of anti-SARS-CoV-2 lgG responses. Epidemiology and Infection, 2021, 149, e153.	2.1	0
34	Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. New England Journal of Medicine, 2021, 385, e84.	27.0	1,394
35	BNT162b2 mRNA COVID-19 vaccination in immunocompromised patients: A prospective cohort study. EClinicalMedicine, 2021, 41, 101158.	7.1	64
36	The SARS-CoV-2 Lambda variant and its neutralisation efficiency following vaccination with Comirnaty, Israel, April to June 2021. Eurosurveillance, 2021, 26, .	7.0	4

#	Article	IF	Citations
37	Letter of response to comment on: Efficacy and safety of BNT162b2 vaccination in solid cancer patients receiving anti-cancer therapy - A single centreÂprospective study. European Journal of Cancer, 2021, , .	2.8	1
38	Immunoglobulin (Ig)A seropositivity against SARS-CoV-2 in healthcare workers in Israel, 4 April to 13 July 2020: an observational study. Eurosurveillance, 2021, 26, .	7.0	0
39	Absence of in-flight transmission of SARS-CoV-2 likely due to use of face masks on board. Journal of Travel Medicine, 2020, 27, .	3.0	32
40	Coding-Complete Genome Sequences of Two SARS-CoV-2 Isolates from Early Manifestations of COVID-19 in Israel. Microbiology Resource Announcements, 2020, 9, .	0.6	2
41	A Nationwide Outbreak of Invasive Pneumococcal Disease in Israel Caused by Streptococcus Pneumoniae Serotype 2. Clinical Infectious Diseases, 2020, 73, e3768-e3777.	5.8	3
42	Evaluating post-vaccine expansion patterns of pneumococcal serotypes. Vaccine, 2020, 38, 7756-7763.	3.8	13
43	Determinants of Staphylococcus aureus carriage in the developing infant nasal microbiome. Genome Biology, 2020, 21, 301.	8.8	11
44	The impact of PCV7/13 on the distribution of carried pneumococcal serotypes and on pilus prevalence; 14Âyears of repeated cross-sectional surveillance. Vaccine, 2020, 38, 3591-3599.	3.8	3
45	Testing IgG antibodies against the RBD of SARS-CoV-2 is sufficient and necessary for COVID-19 diagnosis. PLoS ONE, 2020, 15, e0241164.	2.5	47
46	Emergency Department Triage in the Era of COVID-19: The Sheba Medical Center Experience. Israel Medical Association Journal, 2020, 22, 470-475.	0.1	9
47	Hospital-onset adult invasive pneumococcal disease in Israel: Sicker patients, different pathogens. International Journal of Infectious Diseases, 2019, 85, 195-202.	3.3	4
48	Patterns and Predictors of <i>Staphylococcus aureus</i> Carriage during the First Year of Life: a Longitudinal Study. Journal of Clinical Microbiology, 2019, 57, .	3.9	6
49	Association Between the Decline in Pneumococcal Disease in Unimmunized Adults and Vaccine-Derived Protection Against Colonization in Toddlers and Preschool-Aged Children. American Journal of Epidemiology, 2019, 188, 160-168.	3.4	45
50	Staphylococcus aureus Colonization Induces Strain-Specific Suppression of Interleukin-17. Infection and Immunity, 2018, 86, .	2.2	13
51	Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009. Eurosurveillance, 2018, 23, .	7.0	25
52	Comparison of early effects of pneumococcal conjugate vaccines: PCV7, PCV10 and PCV13 on Streptococcus pneumoniae nasopharyngeal carriage in a population based study; The Palestinian-Israeli Collaborative Research (PICR). PLoS ONE, 2018, 13, e0206927.	2.5	11
53	Sink traps as the source of transmission of OXA-48–producing <i>Serratia marcescens</i> in an intensive care unit. Infection Control and Hospital Epidemiology, 2018, 39, 1307-1315.	1.8	46
54	Distribution of 13-Valent pneumococcal conjugate vaccine serotype <i>streptococcus pneumoniae</i> in adults 50ÂYears and Older presenting with community-acquired pneumonia in Israel. Human Vaccines and Immunotherapeutics, 2018, 14, 2527-2532.	3.3	7

#	Article	IF	Citations
55	Genomic epidemiology of meticillin-resistant Staphylococcus aureus ST22 widespread in communities of the Gaza Strip, 2009. Eurosurveillance, 2018, 23, .	7.0	0
56	The herd effects of infant PCV7/PCV13 sequential implementation on adult invasive pneumococcal disease, six years post implementation; a nationwide study in Israel. Vaccine, 2017, 35, 2449-2456.	3.8	41
57	Clinical evaluation of early acquisition of Staphylococcus aureus carriage by newborns. International Journal of Infectious Diseases, 2017, 64, 9-14.	3.3	20
58	Invasive pneumococcal disease (IPD) in HIV infected patients in Israel since the introduction of pneumococcal conjugated vaccines (PCV): Analysis of a nationwide surveillance study, 2009–2014. Human Vaccines and Immunotherapeutics, 2017, 13, 216-219.	3.3	5
59	Vaccine escape of piliated Streptococcus pneumoniae strains. Vaccine, 2016, 34, 2787-2792.	3.8	8
60	Epidemiological Markers for Interactions Among <i>Streptococcus pneumoniae </i> , <i>Haemophilus influenzae </i> , and <i>Staphylococcus aureus </i> in Upper Respiratory Tract Carriage. Journal of Infectious Diseases, 2016, 213, 1596-1605.	4.0	49
61	<i>Staphylococcus aureus</i> i>and <i>Streptococcus pneumoniae</i> interaction and response to pneumococcal vaccination: Myth or reality?. Human Vaccines and Immunotherapeutics, 2016, 12, 351-357.	3.3	30
62	Varied utilisation of health provision by Arab and Jewish residents in Israel. International Journal for Equity in Health, 2015, 14, 63.	3.5	7
63	Measuring the effects of pneumococcal conjugate vaccine (PCV7) on Streptococcus pneumoniae carriage and antibiotic resistance: The Palestinian-Israeli Collaborative Research (PICR). Vaccine, 2015, 33, 1021-1026.	3.8	22
64	Early impact of PCV7/PCV13 sequential introduction to the national pediatric immunization plan, on adult invasive pneumococcal disease: A nationwide surveillance study. Vaccine, 2015, 33, 1135-1142.	3.8	55
65	Antibiotics in agriculture and the risk to human health: how worried should we be?. Evolutionary Applications, 2015, 8, 240-247.	3.1	401
66	Initial Effects of the National PCV7 Childhood Immunization Program on Adult Invasive Pneumococcal Disease in Israel. PLoS ONE, 2014, 9, e88406.	2.5	10
67	A nationwide surveillance of invasive pneumococcal disease in adults in Israel before an expected effect of PCV7. Vaccine, 2013, 31, 2387-2394.	3.8	12
68	Transmission of Staphylococcus aureus From Mothers to Newborns. Pediatric Infectious Disease Journal, 2012, 31, 360-363.	2.0	34
69	A Typical Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clone Is Widespread in the Community in the Gaza Strip. PLoS ONE, 2012, 7, e42864.	2.5	58
70	Streptococcus pneumoniae Carriage in the Gaza Strip. PLoS ONE, 2012, 7, e35061.	2.5	17
71	Changing parents' opinions regarding antibiotic use in primary care. European Journal of Pediatrics, 2011, 170, 359-364.	2.7	17
72	Is methicillin-resistant Staphylococcus aureus replacing methicillin-susceptible S. aureus?. Journal of Antimicrobial Chemotherapy, 2011, 66, 2199-2214.	3.0	63

#	Article	IF	CITATIONS
73	Reduction in Antibiotic Use Following a Cluster Randomized Controlled Multifaceted Intervention: The Israeli Judicious Antibiotic Prescription Study. Clinical Infectious Diseases, 2011, 53, 33-41.	5.8	67
74	Potential Role of Active Surveillance in the Control of a Hospital-Wide Outbreak of Carbapenem-Resistant <i>Klebsiella pneumoniae</i> Infection. Infection Control and Hospital Epidemiology, 2010, 31, 620-626.	1.8	152
75	Re-emergence of the type 1 pilus among Streptococcus pneumoniae isolates in Massachusetts, USA. Vaccine, 2010, 28, 4842-4846.	3.8	60
76	Killing niche competitors by remote-control bacteriophage induction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1234-1238.	7.1	136
77	The Pneumococcal Pilus Predicts the Absence of <i>Staphylococcus aureus </i> Coâ€Colonization in Pneumococcal Carriers. Clinical Infectious Diseases, 2009, 48, 760-763.	5.8	46
78	Parental Staphylococcus aureus Carriage is Associated With Staphylococcal Carriage in Young Children. Pediatric Infectious Disease Journal, 2009, 28, 960-965.	2.0	33
79	In Vitro Bactericidal Activity of <i>Streptococcus pneumoniae</i> and Bactericidal Susceptibility of <i>Staphylococcus aureus</i> Strains Isolated from Cocolonized versus Noncocolonized Children. Journal of Clinical Microbiology, 2008, 46, 747-749.	3.9	14
80	Epidemiologic Evidence for Serotypeâ€Specific Acquired Immunity to Pneumococcal Carriage. Journal of Infectious Diseases, 2008, 197, 1511-1518.	4.0	117
81	Does Pneumococcal Conjugate Vaccine Influence <i>Staphylococcus aureus </i> Carriage in Children?. Clinical Infectious Diseases, 2008, 47, 289-291.	5.8	16
82	SpxB Is a Suicide Gene of <i>Streptococcus pneumoniae </i> and Confers a Selective Advantage in an In Vivo Competitive Colonization Model. Journal of Bacteriology, 2007, 189, 6532-6539.	2.2	97
83	Comparison of community-acquired methicillin-resistant Staphylococcus aureus bacteremia to other staphylococcal species in a neonatal intensive care unit. European Journal of Pediatrics, 2007, 166, 319-325.	2.7	47
84	Interference between Streptococcus pneumoniae and Staphylococcus aureus: In Vitro Hydrogen Peroxide-Mediated Killing by Streptococcus pneumoniae. Journal of Bacteriology, 2006, 188, 4996-5001.	2.2	172
85	Resistant Organisms and Otitis Media. Pediatric Infectious Disease Journal, 2005, 24, 849.	2.0	0
86	Methicillin-resistantStaphylococcus aureusin Neonatal Intensive Care Unit. Emerging Infectious Diseases, 2005, 11, 453-456.	4.3	110
87	Association Between Carriage of <emph type="ITAL">Streptococcus pneumoniae</emph> and <emph type="ITAL">Staphylococcus aureus</emph> in Children. JAMA - Journal of the American Medical Association, 2004, 292, 716.	7.4	261
88	Nasopharyngeal Carriage of <i> Streptococcus pneumoniae </i> by Adults and Children in Community and Family Settings. Clinical Infectious Diseases, 2004, 38, 632-639.	5.8	239
89	Independent Risk Factors for Carriage of Penicillin-non-susceptible Streptococcus pneumoniae. Scandinavian Journal of Infectious Diseases, 2003, 35, 219-222.	1.5	40
90	Reply to Paul and Leibovici. Clinical Infectious Diseases, 0, , .	5.8	0